Lecture 14:
Indexing with local features

Thursday, Nov 1
Prof. Kristen Grauman

Outline

• Last time: local invariant features, scale invariant detection
• Applications, including stereo
• Indexing with invariant features
• Bag-of-words representation for images
Classes of transformations

- **Euclidean/rigid**: Translation + rotation
 - Lengths and angles preserved
- **Similarity**: Translation + rotation + uniform scale
- **Affine**: Similarity + shear
 - Valid for orthographic camera, locally planar object
 - Lengths and angles **not** preserved

Invariant local features

Subset of local feature types designed to be *invariant* to
- Scale
- Translation
- Rotation
- Affine transformations
- Illumination

1) Detect distinctive interest points
2) Extract invariant descriptors

[Mikolajczyk & Schmid, Matas et al., Tuytelaars & Van Gool, Lowe, Kadir et al.,...]
Recall: segmentation as clustering

• Previously we represented *pixels* with features, mapping each one to a d-dimensional vector.
Image patches as vectors

Each window is a vector in an \(m^2 \) dimensional vector space. Normalization makes them unit length.

“Unwrap” image to form vector, using raster scan order

Image metrics

Can compare those vector descriptions

- SSD
- Dot product
- …
SIFT descriptors: vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create **array of orientation histograms**
- 8 orientations x 4x4 histogram array = 128 dimensions

Indexing with local features

- Now we have patches or regions, still mapping each one to a d-dimensional vector (e.g., $d=128$ for SIFT)
Indexing with local features

- When we see close points in feature space, we have similar descriptors, which indicates similar local content.

What are the limitations of describing image patches with a stack of pixel intensities?

Why should something like a SIFT descriptor be more robust?

What role does the interest point detection play?
Many applications of local features

- Wide baseline stereo
- Motion tracking
- Panoramas
- Mobile robot navigation
- 3D reconstruction
- Recognition
 - Specific objects
 - Textures
 - Categories
- ...

Recall: Triangulation

Estimate scene point based on camera relationships and correspondence.
Dense correspondence search

For each epipolar line
 For each pixel / window in the left image
 • compare with every pixel / window on same epipolar line in right image
 • pick position with minimum match cost (e.g., SSD, correlation)

Sparse correspondence search

• Restrict search to sparse set of detected features
• Rather than pixel values (or lists of pixel values) use feature descriptor and an associated feature distance
• Still narrow search further by epipolar geometry
Wide baseline stereo

- 3d reconstruction depends on finding good correspondences
- Especially with wide-baseline views, local image deformations not well-approximated with rigid transformations
- Cannot simply compare regions of fixed shape (circles, rectangles) – shape is not preserved under affine transformations

Figure 1: BOOKSHELF: Estimated epipolar geometry on indoor scene with significant scale change. In the contours the change in the resolution of detected DRs is clearly visible.

Wide baseline stereo

Figure 2: VALBONNE: Estimated epipolar geometry and points associated to the matched regions are shown in the first row. Cutouts in the second row show matched bricks.

Wide baseline stereo

Figure 3: WASH: Epipolar geometry and dense matched regions with fully affine distortion.
SIFT matching and recognition

- Index descriptors
- Generalized Hough transform: vote for object poses
- Refine with geometric verification: affine fit, check for agreement between image features and model

SIFT Features

Recognition of specific objects, scenes

Schmid and Mohr 1997
Sivic and Zisserman, 2003
Rothganger et al. 2003
Lowe 2002

[Lowe 1999]
Panorama stitching

Value of local (invariant) features

- Complexity reduction via selection of distinctive points
- Describe images, objects, parts without requiring segmentation
- Local character means robustness to clutter, occlusion
- Robustness: similar descriptors in spite of noise, blur, etc.
Comparative evaluations

Testing various detector and descriptor options for relative
-repeatability and distinctiveness-

Planar objects / flat scenes:

3D objects:
Moreels & Perona (2005)

http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
Outline

• Last time: local invariant features, scale invariant detection
• Applications, including stereo
 • Indexing with invariant features
 • Bag-of-words representation for images

Success of text retrieval

• efficient
• scalable
• high precision

Can we use retrieval mechanisms from text retrieval?

Need a visual analogy of a textual word.

Slide from Andrew Zisserman, University of Oxford
Visual problem

- Retrieve key frames containing the same object

Problem specification: particular object retrieval

Example: visual search in feature films

Visually defined query

“Find this clock”

“Find this place”

“Groundhog Day” [Rammis, 1993]
Text retrieval vs. image search

• What makes the problems similar, different?
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain; the cerebral cortex was a movie screen upon which the image in the eye was projected. Through the discoveries of Hubel and Wiesel we now know that behind the origin of the visual perception in the brain there is a considerably more complicated course of events. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have demonstrated that the message about the image falling on the retina undergoes a stepwise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with a 18% rise in imports to $660bn. The figures are likely to further annoy the US, which has long argued that China's exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says the yuan is only one factor. Bank of China governor Zhou Xiaochuan said the country also needs to do more to boost domestic demand so more goods stay within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to rise freely. However, Beijing has made it clear it will take its time and tread carefully before allowing the yuan to rise further in value.

Analogy to documents

sensory, brain, visual, perception, retinal, cerebral cortex, eye, cell, optical nerve, image Hubel, Wiesel

China, trade, surplus, commerce, exports, imports, US, yuan, bank, domestic, foreign, increase, trade, value
representation

feature detection & representation

image representation

codewords dictionary

category models (and/or) classifiers

classifiers

category decision

recognition
1. Feature detection and representation

- Regular grid

1. Feature detection and representation

- Regular grid

- Interest point detector
1. Feature detection and representation

- Regular grid

- Interest point detector

- Other methods
 - Random sampling
 - Segmentation based patches

1. Feature detection and representation

- Compute SIFT descriptor
 - [Lowe'99]

- Normalize patch

- Detect patches
 - [Mikojaczyk and Schmid '02]
 - [Matas et al. '02]
 - [Sivic et al. '03]

Slide credit: Josef Sivic
1. Feature detection and representation

2. Codewords dictionary formation
2. Codewords dictionary formation

Extract some local features from a number of images ...

SIFT descriptor space: each point is 128-dimensional
3. Image representation

Image patch examples of codewords

Sivic et al. 2005
Visual words = textons

- **Texton** = cluster center of filter responses over collection of images [Leung and Malik, 1999]

- Represent texture or material with histogram of texton occurrences (or prototypes of whatever feature type employed)

Visual words and bags of words

- Have a way to represent
 - Individual local image regions as “tokens” / discrete set of visual words
 - Entire image in terms of its distribution of words

- How to use this for indexing task?

- Again, can look to text retrieval for inspiration
Inverted file index

- For each word, store list of documents (pages) where that word occurs

Inverted file index for images

When would using an inverted file reduce the amount of images we need to search/compare?
Video Google [Sivic & Zisserman, 2003]

In each frame independently
determine elliptical regions (segmentation covariant with camera viewpoint)
compute SIFT descriptor for each region [Lowe '99]

1000+ descriptors per frame

Assign visual words and compute histograms for each key frame in the video

Detect patches
Normalize patch
Compute SIFT descriptor
Find nearest cluster centre

Represent frame by sparse histogram of visual word occurrences

Slide from Andrew Zisserman, University of Oxford
Video Google [Sivic & Zisserman, 2003]

- Stage 1: generate a short list of possible frames using bag of visual word representation:
 1. Accumulate all visual words within the query region
 2. Use “book index” to find other frames with these words
 3. Compute similarity for frames which share at least one word

 \[
 t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}
 \]

 \(n_{id}\): Number of occurrences of word \(i\) in document \(d\)
 \(n_d\): Number of words in document \(d\)
 \(N\): Total number of documents in database
 \(n_i\): Number of occurrences of word \(i\) in whole database

Generates a tf-idf ranked list of all the frames in dataset

\(tf-idf\) weighting

- Term frequency – inverse document frequency
- Describe frame by frequency of each word within it, downweight words that appear often in the database
- (Standard weighting for text retrieval)
Comparing bags of words

• Rank frames by dot product between their (tf-idf weighted) occurrence counts

\[
\begin{bmatrix}
1 & 8 & 1 & 4
\end{bmatrix} \cdot \begin{bmatrix}
5 & 1 & 1 & 0
\end{bmatrix}
\]

Video Google [Sivic & Zisserman, 2003]

Stage 2: re-rank short list on spatial consistency

• Discard mismatches
 • require spatial agreement with the neighbouring matches

• Compute matching score
 • score each match with the number of agreement matches
 • accumulate the score from all matches
Video Google demo

http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html

Hierarchical vocabulary

• To manage a large vocabulary efficiently, we can form the quantization of feature space in a hierarchical way

• David Nister & Henrik Stewenius, Scalable Recognition with a Vocabulary Tree, CVPR 2006
What is the computational advantage of the hierarchical representation bag of words, vs. a flat vocabulary?

Larger vocabularies can be advantageous...
But what happens if it is too large?
Bag of words representation: advantages

- Flexibility comes with ignoring geometry (?)
- Compact description, yet rich
- Local features \rightarrow vector
 - Usable representation
 - Relatively efficient learning
- Yields good results in practice

Bag of words representation: Issues

- Flexibility comes with ignoring geometry (!)
- Background/foreground treated at once
- Vocabulary formation
 - Number of words/clusters?
 - Universal, or dataset specific?
 - May be expensive
- How to localize/segment object?
Making the Sky Searchable: Fast Geometric Hashing for Automated Astrometry

Sam Roweis, Dustin Lang & Keir Mierle
University of Toronto

David Hogg & Michael Blanton
New York University

Check out the slides at:

cosmo.nyu.edu/hogg/research/2006/09/28/astrometry google ppt

Example

Roweis, Lang, Mierle, Hogg & Blanton

A shot of the Great Nebula, by Jerry Lodriguss (c.2006), from astropix.com
http://astrometry.net/gallery.html
Example

Roweis, Lang, Mierle, Hogg & Blanton

An amateur shot of M100, by Filippo Ciferri (c.2007) from flickr.com
http://astrometry.net/gallery.html

Example

Roweis, Lang, Mierle, Hogg & Blanton

A beautiful image of Bode's nebula (c.2007) by Peter Bresseler, from starlightfriend.de
http://astrometry.net/gallery.html
Today: key ideas

• Invariant features: distinctive matches possible in spite of significant view change, useful for wide baseline stereo
• Bag of words representation: quantize feature space to make discrete set of visual words
 – Summarize image by distribution of words
 – Index individual words
• Inverted index: pre-compute index to enable faster search at query time

Coming up

• Next week:
 – Model-based object recognition
 – Face recognition, detection

• Read FP 18.1-18.5, FP 22.1-22.3