


Outline

« Last time:
— Model-based recognition wrap-up
— Classifiers: templates and appearance models
» Histogram-based classifier
» Eigenface approach, nearest neighbors
* Today:
— Limitations of Eigenfaces, PCA
— Discriminative classifiers
* Viola & Jones face detector (boosting)
« SVMs




Images (patches) as vectors

“Unwrap”
1mage to form
vector, using
raster scan order
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Normalization makes | |
them unit length.

Slide by Trevor Darrell, MIT




Other image features

— vector of pixel intensities
— grayscale / color histogram
— bank of filter responses




Other image features
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— vector of pixel intensities
—grayscale / color histogram
—bank of filter responses

— SIFT descriptor




Other image features

— vector of pixel intensities
—grayscale / color histogram
—bank of filter responses

— SIFT descriptor

—bag of words...




Feature space / Representation

Feature dimension 2

Feature dimension 1




Last time:

« Construct lower
dimensional linear
subspace that best
explains variation of
the training examples

Eigenfaces
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Last time: Eigenfaces

 Premise: set of faces lie in a

subspace of set of all images ) .

 Use PCA to determine the k (k ﬂu‘m”;‘gﬁ‘;ﬁ]ws
vectors u,,...u, that span that training images
subspace:

X=~HM+w,u,+ ... +wu
» Then use nearest neighbors in “face

space” coordinates (w,,...w,) to do
recognition




Last time: Eigenfaces
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Last time: Eigenfaces

Top eigenvectors
of the covariance
matrix: u,,...u,

Mean: u

\ Pixel value 2

Pixel value 1




Last time: Eigenfaces

Face x in “face space” coordinates [wy,...,W,]:
project the vector of pixel intensities onto each
eigenvector.




Last time: Eigenfaces

Reconstruction from low-dimensional

P rOj ection: Reconstructed

face vector

Original face
vector




Last time: Eigenface recognition

* Process labeled training images:

— Unwrap the training face images into vectors to
form a matrix

— Perform principal components analysis (PCA):
compute eigenvalues and eigenvectors of the
covariance matrix

— Project each training image onto subspace
« Given novel image:
— Project onto subspace

—If|jx — x| >0
Unknown, not face
— Else

Classify as closest training face in k-dimensional subspace




Benefits

* Form of automatic feature selection
« Can sometimes remove lighting variations
« Computational efficiency:

— Reducing storage from d to k

— Distances computed in k dimensions




Limitations

» PCA useful to represent data, but directions
of most variance not necessarily useful for
classification




Alternative: Fisherfaces
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Fig. 2. A comparison of principal component analysis (PCA) and
Fisher's linear discriminant (FLD) for a two class problem where data
for each class lies near a linear subspace.

Belhumeur et al. PAMI
1997

Rather than maximize
scatter of projected
classes as in PCA,
maximize ratio of
between-class scatter to
within-class scatter by
using Fisher’s Linear
Discriminant




Limitations

» PCA useful to represent data, but directions
of most variance not necessarily useful for
classification

* Not appropriate for all data: PCA is fitting
Gaussian where  is covariance matrix
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There may be non-linear structure in high-dimensional data.
Figure from Saul & Roweis




Limitations

« PCA useful to represent data, but directions
of most variance not necessarily useful for
classification

* Not appropriate for all data: PCA is fitting
Gaussian where 2 is covariance matrix

* Assumptions about pre-processing may be
unrealistic, or demands good detector




Prototype faces

« Mean face as average of intensities:
ok for well-aligned images...

Mean: u




Prototype faces

...but unaligned shapes are a problem.

We must include appearance AND shape to
construct a prototype.




Mark coordinates
of standard
features

Prototype faces in shape and appearance

Warp faces to mean shape. Blend images to provide image
with average appearance of the group, normalized for shape.

Compare to faces that are blended without changing shape.

University of St. Andrews, Perception Laboratory Figures from http://perception.st-and.ac.uk/Prototyping/prototyping.htm




Using prototype faces: aging

Average
appearance
and shape
for different
age groups.

Figure 1. Face blends. Each blend contains the average colour and shﬁpc information ﬁ"om individual faces within the same
5 year age bracket (a) 20-24, (b) 25-29. (c) 30-34, (d) 35-39, (e) 40-44, (f) 45-49 and (g) 50-54. (h) The shaded area
illustrates the difference between average face shapes of the 25-29 (dark lines) and 50-54 age brackets.

Shape
differences
for 25-29 yr
olds and 50-
54 yr olds

Burt D.M. & Perrett D.I. (1995) Perception of age in adult Caucasian male faces: computer graphic manipulation of shape and
colour information. Proc. R. Soc. 259, 137-143.




Using prototype faces: aging

Enhance their differences to
form caricature

/\ Caricature

. TR 4.5 i £ AN
Figure 2. Enhancing colour cues to age. (a) Image caricaturing colour differences between (b) the blend of 50-54 year
old male faces and a shape matched blend of all age groups (age 20-54). (¢) Contrast and colour enhanced image made
by amplifying RGB pixel differences between original blend and a uniform grey image.

Burt D.M. & Perrett D.I. (1995) Perception of age in adult Caucasian male faces: computer graphic manipulation of shape and
colour information. Proc. R. Soc. 259, 137-143.




Using prototype faces: aging

“Facial aging”: get facial
prototypes from different age
groups, consider the
difference to get function that
maps one age group to
another.

University of St. Andrews, Perception Laboratory Copyright 1995

Perception Lab.
University of 5t. Andrews

10808:n"2€" pue-s‘yafisdy:dpy

Burt D.M. & Perrett D.I. (1995) Perception of age in adult Caucasian male faces: computer graphic manipulation of shape and
colour information. Proc. R. Soc. 259, 137-143.




Aging demo

“feminize”

Baby Child Teenager Older adult

* http://morph.cs.st-andrews.ac.uk//Transformer/




Aging demo

“Masculinize”

Baby Child Teenager Older adult

* http://morph.cs.st-andrews.ac.uk//Transformer/
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— Model-based recognition wrap-up
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» Histogram-based classifier
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* Viola & Jones face detector (boosting)
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The Classical Face Detection Process
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Feature dimension 2

Learning to distinguish faces and
“non-faces”

* How should the decision be made at every
sub-window?

=l S|y

Feature dimension 1




Feature dimension 2

Learning to distinguish faces and
“non-faces”

* How should the decision be made at every
sub-window?

« Compute boundary that divides the training
examples well...




Questions

« How to discriminate faces and non-faces?
— Representation choice
— Classifier choice

 How to deal with the expense of such a
windowed scan?

— Efficient feature computation

— Limit amount of computation required to
make a decision per window




Rapid Object Detection Using a Boosted
Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

[CVPR 2001]




Image Features

“Rectangle filters”
B
Differences between sums
of pixels in adjacent
rectangles C P

Viola and Jones. Robust object detection using a boosted cascade ot sumple teatures, CVPR 2001




Integral Image Value at (cy) i

sum of pixels
above and to the
left of (x,y)

- Defined as:

i(x,y) = Z i(z',y')

' <z,y <y

Can be computed in one pass over the
original image:

s(x,y)=s(x,y =D +i(x, y)

ii(x,y)=ii(x =1, ) +s(x, )




Integral Image Value at (cy) i

sum of pixels
above and to the
left of (x,y)

- Defined as:

i(x,y) = Z i(z',y')

' <z,y <y

XY)

* Any rectangular sum can be
computed in constant time:

D=1+4-(2+3)
=A+(A+B+C+D)—(A+C+ A+B)
=D

» Rectangle features can be computed
as differences between rectangles

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Large library of filters

= gl # |
e ILAD T
e Il ==

180,000+ possible features associated with each image
subwindow...efficient, but still can’t compute complete set at
detection time.




Boosting

* Weak learner: classifier with accuracy
that need be only better than chance

— Binary classification: error < 50%

» Boosting combines multiple weak
classifiers to create accurate ensemble

« Can use fast simple classifiers without
sacrificing accuracy.




AdaBoost [Freund & Schapire]: Intuition
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Figure from Freund and Schapire




AdaBoost [Freund & Schapire]: Intuition
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Figure from Freund and Schapire




AdaBoost [Freund & Schapire]: Intuition

. . “‘:eights __.—"
Weak ® () [0) Increased .\.E.\
Classifier 1 ~ " - -----""" @ .
@ o Weak >.__': (o)
@ Q Classifier 2 — q

Weak "
classifier 3 .“ ..
@ |
Final classifier is t’ ..
C ‘
combination of the weak .1.
classifiers.

Figure from Freund and Schapire




e Given example images (&1,41),... , (#n,yn) where

y; = 0,1 for negative and positive examples respec-
tively.

b1 1 e

e Initialize weights wy,; = 5—, 77 for y; = 0, 1 respec-

tively, where m and [ are the number of negatives and
positives respectively.

e Fort=1,....7T:
. Normalize the weights,
Wi

21wy

so that w; 1s a probability distribution.

Wy —

8]

. For each feature, j, train a classifier h; which
is restricted to using a single feature. The
error is evaluated with respect to wy, e¢; =
> wi |hy (i) — yil.

3. Choose the classifier, h¢, with the lowest error €;.

4. Update the weights:
Wepr: = w3,

where ¢; = 0 if example x; is classified cor-

rectly, e; = 1 otherwise, and 3; = 5 "f{_f .

e The final strong classifier is:

B T
hiz) = { (1) Sioiahi(@) =2 53, @

otherwise
where a; = log 7~

<+ uniform weights

AdaBoost
Algorithm
[Freund &
Schapire]:

Start with

on training
examples

<« Evaluate
weighted error
for each feature,
pick best.

Incorrectly classified -> more weight

-«

Correctly classified -> less weight

Final classifier is combination of the
“~ weak ones, weighted according to
error they had.




Boosting for feature selection

« Want to select the single rectangle feature
that best separates positive and negative
examples (in terms of weighted error).

f(x)
This dimension: output of a

possible rectangle feature
on faces and non-faces.

hT(X{ {

Image

subwindow

Optimal threshold that results
in minimal misclassifications

+1 1f f(x)> 6,
-1 otherwise




AdaBoost for Efficient Feature
Selection
* Image Features = Weak Classifiers

* For each round of boosting:
— Evaluate each rectangle filter on each example
— Sort examples by filter values

— Select best threshold for each filter (min error)
 Sorted list can be quickly scanned for the optimal threshold

— Select best filter/threshold combination
— Weight on this feature is a simple function of error rate
— Reweight examples

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




First and second features selected by AdaBoost.




First and second features selected by AdaBoost.
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Questions

« How to discriminate faces and non-faces?
— Representation choice
— Classifier choice

* How to deal with the expense of such a
windowed scan?

— Efficient feature computation

— Limit amount of computation required to
make a decision per window




Attentional cascade

First apply smaller (fewer features, efficient)
classifiers with very low false negative rates.

— accomplish this by adjusting threshold on boosted
classifier to get false negative rate near 0.

This will reject many non-face windows early,
but make sure most positives get through.

Then, more complex classifiers are applied to
get low false positive rates.

Negative label at any point = reject sub-
window




Trading Speed for Accuracy

* Given a nested set of classifier

% False Pos

hypothesis classes

50

% Detection

a0

FACE

3 T
IMAGE > >
SUB-WINDOW
lr
NON-FACE NON-FACE NON-FACE
Viola and Jones. Robust object detection using a boosted cascade of simple features. CVPR 2001




Cascaded Classifier
g\ég-ciimDow—' _“‘3'; ﬂ i’ FACE

lF lr lF

NON-FACE NON-FACE NON-FACE

e A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

» A 5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)
— using data from previous stage.

e A 20 feature classifier achieve 100% detection
rate with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features. CVPR 2001




Expermment: Stmple Cascaded Classifier

FOC cunmes comparing cazcaded clazsifier to monolithic clazzifar
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




A Real-time Face Detection System

Training faces: 4916 face images (24 X 24 3 ippya
pixels) plus vertical flips for a total of 9832 .|
faces I

Training non-faces: 350 million sub-
windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,
25, 25,50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features.

Viola and Jones. Robust object detection using a boosted cascade of simple features. CVPR 2001




Running the detector

« Scan across image at multiple scales and
locations

« Scale the detector (features) rather than the
input image

— Note: does not change cost of feature
computation




Speed of Face Detector

Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium lll, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

An implementation is available in Intel’s
OpenCV library.




Output of Face Detector on Test Images
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More Examples




Paul Viola, ICCV tutorial

Profile Detection

Train with profile views
instead of frontal

Viola 2003




More Results

Paul Viola, ICCV tutorial Viola 2003




Profile Features

Paul Viola, ICCV tutorial

Viola 2003




Fast detection: Viola & Jones

Key points:

* Huge library of features

* Integral image — efficiently computed

« AdaBoost to find best combo of features
» Cascade architecture for fast detection




Local features vs. template matching

« Template matching

— 250,000 locations x 30 orientations x 4 scales = 30,000,000
evaluations

— Partial occlusions and other variations not handled well
without large increase in number of templates

— (Have to be careful about false positives!)

» Local feature approach
— Say 3000 points considered for evaluation

— Features more invariant to illumination, 3d rotation, object
variation

— Use of many small sub-templates increases robustness to
partial occlusion

Adapted from Bill Freeman, MIT




General approaches to face
recognition/detection

Subspaces

— e.g. Turk and Pentland, Belhumeur and Kreigman
Shape and appearance models

— e.g. Cootes and Taylor, Blanz and Vetter
Boosting

— e.g. Viola and Jones

SVMs

— e.g. Heisele et al., Guo et al.

Neural networks
— e.g. Rowley et al.

HMMs

— e.g. Nefian et al.
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Next

Coming up:
— Problem set 4 out Thursday, due 11/29
— Read FP Ch 25




