Lecture 18: Recogniti	on IV
Thursday, Nov 15	spade
MALE	join where

- The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$
- If every data point is mapped into high-dimensional space via some transformation Φ : $x \rightarrow \phi(x)$, the dot product becomes: $K(x_i, x_j) = \phi(x_i)^{T} \phi(x_j)$
- A kernel function is similarity function that corresponds to an inner product in some expanded feature space.
- Example:
- 2-dimensional vectors $x=[x_1 \ x_2]$; let $K(x_i, x_j)=(1 + x_i^T x_j)^2$ Need to show that $K(x_i, x_j)=\varphi(x_i)^T\varphi(x_i)$:
- $K(x_i, x_j) = (1 + x_i^T x_j)^2$
 - $= 1 + x_{il}^2 x_{jl}^2 + 2 x_{il} x_{jl} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{il} x_{jl} + 2 x_{i2} x_{j2}$
 - $= [1 \ x_{i1}^2 \ \sqrt{2} \ x_{i1}x_{i2} \ x_{i2}^2 \ \sqrt{2}x_{i1} \ \sqrt{2}x_{i2}]^{\mathrm{T}} [1 \ x_{j1}^2 \ \sqrt{2} \ x_{j1}x_{j2} \ x_{j2}^2 \ \sqrt{2}x_{j1} \ \sqrt{2}x_{j2}]$
- = $\varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$, where $\varphi(\mathbf{x}) = \begin{bmatrix} 1 & x_1^2 & \sqrt{2} & x_1 x_2 & x_2^2 & \sqrt{2} x_1 & \sqrt{2} x_2 \end{bmatrix}$

Examples of General Purpose Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Polynomial of power $p: \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$

Gaussian (radial-basis function network):
$$\|_{\mathbf{Y}_{n}} = \mathbf{Y}_{n}\|^{2}$$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \exp(-\frac{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|}{2\sigma^{2}})$$

Learning gender with SVMs

- Training examples:
 - 1044 males
 - 713 females
- Experiment with various kernels, select Gaussian RBF

Classifier	Error Rate Overall Male	5	
and a state of the		Female	
SVM with RBF kernel	3.38%	2.05%	4.79%
SVM with cubic polynomial kernel	4.88%	4.21%	5.59%
Large Ensemble of RBF	5.54%	4.59%	6.55%
Classical RBF	7.79%	6.89%	8.75%
Quadratic classifier	10.63%	9.44%	11.88%
Fisher linear discriminant	13.03%	12.31%	13.78%
Nearest neighbor	27.16%	26.53%	28.04%
Linear classifier	58.95%	58.47%	59.45%

Gender perception experiment: How well can humans do?

- Subjects:
 - 30 people (22 male, 8 female)
 - Ages mid-20's to mid-40's
- Test data:
 - 254 face images (6 males, 4 females)
 - Low res and high res versions
- Task:
 - Classify as male or female, forced choice
 - No time limit

Moghaddam and Yang, Face & Gesture 2000.

Summary: SVM classifiers

- Discriminative classifier
- · Effective for high-dimesional data
- · Flexibility/modularity due to kernel
- Very good performance in practice, widely used in vision applications

Outline

- Discriminative classifiers

 SVMs
 - SVMs
- Learning categories from weakly supervised images
 Constellation model
- Shape matching
 - Shape context, visual CAPTCHA application

Weak supervision • How can we learn object models in the presence of clutter? Image: Constraint of the pres

Weak supervision Questions: What about categories where an iconic "template" representation is infeasible? What is the object to be recognized / the part of the image we want to build a model for? For that object, what parts are distinctive or things that can be reliably detected in different instances? Weber, Welling, Perona. Unsupervised Learning of Models for Recognition, ECCV 2000.

One possible constellation model • Model class with joint probability density function on shape and appearance Gaussian shape pdf Gaussian part appearance pdf Caussian part appearance pdf

mutual positions of the parts, with uncertainty

Unsupervised learning of partbased models

Main idea:

- Use interest operator to detect small highly textured regions (on both fg and bg)
 - If training objects have similar appearance, these regions will often be similar in different training examples
- Cluster patches: large clusters used to select candidate fg parts
- Choose most informative parts while simultaneously estimating model parameters
 - Iteratively try different combinations of a small number of parts and check model performance on validation set to evaluate quality

Weber, Welling, Perona, ECCV 2000.

· Object of interest is only consistent thing somewhere in each training image.

ages from Rob Fergu

Model learning

Which of the candidate parts define the class, and in what configuration?

Initialize model parameters randomly.

Iterate while fit improves:

- 1. Find best assignment in the training images given the parameters
- 2. Recompute parameters based on current features

Outline

- Discriminative classifiers

 SVMs
- Learning categories from weakly supervised images
 Constellation model
- Shape matching
- Shape context, visual CAPTCHA application

- Face images
- For next week:
 _ Read Trucco & Verri handout on Motion
- Problem set 4 due 11/29

References

- Unsupervised Learning of Models for Recognition, by M. Weber, M. Welling and P. Perona, ECCV 2000.
 Towarda Automatia Discovary of Object Catagorias, by
- Towards Automatic Discovery of Object Categories, by M. Weber, M. Welling and P. Perona, CVPR 2000.
- Object Class Recognition by Unsupervised Scale-Invariant Learning, by Fergus, Perona, and Zisserman, CVPR 2003.
- Matching Shapes, by S. Belongie, J. Malik and J. Puzicha, ICCV 2001.
- Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA, by G. Mori and J. Malik, CVPR 2003.
- Learning Gender with Support Faces, by Moghaddam and Yang, TPAMI, 2002.
 SV(Multidea from Androw Macro. CMUL
- SVM slides from Andrew Moore, CMU