
Lecture 18: Recognition IV

Thursday, Nov 15
Prof. Kristen Grauman

Outline
• Discriminative classifiers

– SVMs

• Learning categories from weakly supervised images
– Constellation model

• Shape matching
– Shape context, visual CAPTCHA application

Recall: boosting
• Want to select the single feature that best 

separates positive and negative examples, in 
terms of weighted error.

Each dimension: output of a 
possible rectangle feature 
on faces and non-faces.
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Recall: boosting
• Want to select the single feature that best 

separates positive and negative examples, in 
terms of weighted error.

Each dimension: output of a 
possible rectangle feature 
on faces and non-faces.

Image subwindow

Optimal threshold that results 
in minimal misclassifications

=

Notice that any threshold giving same error 
rate would be equally good here.
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Planes in R3
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Hyperplanes in Rn
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Hyperplane H is set of all vectors               
which satisfy:

nR∈x
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),(
distance from 
point to 
hyperplane

Support Vector Machines
(SVMs)

• Discriminative 
classifier based on 
optimal separating 
hyperplane

• What hyperplane is 
optimal?

Linear Classifiers
f x yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

w
x + b

=0

w x + b<0

w x + b>0

Slides from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
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Linear Classifiers
f x yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Any of these 
would be fine..

..but which is 
best?



Linear Classifiers
f x yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

Misclassified
to +1 class

Classifier Margin
f x yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.

Classifier Margin
f x yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.

Maximum Margin
f x yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with maximum 
margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Linear SVM

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against

1. Maximizing the margin is good 
according to intuition and theory 

2. Implies that only support vectors are 
important; other training examples 
are ignorable.

3. Empirically it works very very well.

Linear SVM Mathematically
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For the support vectors, distance to hyperplane is 1 for 
a positives and -1 for negatives.

Question

• How should we choose values for w,b?

1.want the training data separated by the 
hyperplane so it classifies them correctly

2.want the margin width M as large as possible

Linear SVM Mathematically
Goal: 1) Correctly classify all training data

if yi = +1
if yi = -1
for all i

2) Maximize the Margin
same as minimize

Formulated as a Quadratic Optimization Problem, solve for w and b:

Minimize 
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The Optimization Problem Solution
Solution has the form (omitting derivation):

Each non-zero αi indicates that corresponding xi is a 
support vector.
Then the classifying function will have the form:

Notice that it relies on an inner product between the test 
point x and the support vectors xi

Solving the optimization problem also involves 
computing the inner products xi

Txj between all pairs of 
training points.

w =Σαiyixi b= yk- wTxk for any xk such that αk≠ 0

f(x) = Σαiyixi
Tx + b

Non-linear SVMs
Datasets that are linearly separable with some noise 
work out great:

But what are we going to do if the dataset is just too hard? 

How about… mapping data to a higher-dimensional 
space:

0 x

0 x

0 x

x2

Non-linear SVMs:  Feature spaces
General idea:   the original input space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x→ φ(x)

The “Kernel Trick”
The linear classifier relies on dot product between vectors K(xi,xj)=xi

Txj

If every data point is mapped into high-dimensional space via some 
transformation Φ:  x→ φ(x), the dot product becomes:

K(xi,xj)= φ(xi) Tφ(xj)

A kernel function is similarity function that corresponds to an inner product 
in some expanded feature space.
Example: 
2-dimensional vectors x=[x1   x2]; let K(xi,xj)=(1 + xi

Txj)2

Need to show that K(xi,xj)= φ(xi) Tφ(xj):
K(xi,xj)=(1 + xi

Txj)2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 
= φ(xi) Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]

Examples of General Purpose 
Kernel Functions

Linear: K(xi,xj)= xi 
Txj

Polynomial of power p: K(xi,xj)= (1+ xi 
Txj)p

Gaussian (radial-basis function network):
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SVMs for object recognition

1. Define your representation 
for each example.

2. Select a kernel function.

3. Compute pairwise kernel 
values between labeled 
examples, identify support 
vectors.

4. Compute kernel values 
between new inputs and 
support vectors to classify.



Example: learning gender with SVMs

Moghaddam and Yang, Learning Gender with Support Faces, 
TPAMI 2002.

Moghaddam and Yang, Face & Gesture 2000.
Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Processed 
faces

Face alignment 
processing

• Training examples:
– 1044 males
– 713 females

• Experiment with various kernels, select 
Gaussian RBF

Learning gender with SVMs Support Faces

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Gender perception experiment:
How well can humans do?

• Subjects: 
– 30 people (22 male, 8 female)
– Ages mid-20’s to mid-40’s

• Test data:
– 254 face images (6 males, 4 females)
– Low res and high res versions

• Task:
– Classify as male or female, forced choice
– No time limit

Moghaddam and Yang, Face & Gesture 2000.



Moghaddam and Yang, Face & Gesture 2000.

Gender perception experiment:
How well can humans do?

Error Error

Human vs. Machine

• SVMs
perform 
better than 
any single 
human text 
subject

Hardest examples for humans

Moghaddam and Yang, Face & Gesture 2000.

Summary: SVM classifiers

• Discriminative classifier
• Effective for high-dimesional data
• Flexibility/modularity due to kernel
• Very good performance in practice, widely 

used in vision applications

Outline
• Discriminative classifiers

– SVMs

• Learning categories from weakly supervised images
– Constellation model

• Shape matching
– Shape context, visual CAPTCHA application

Weak supervision
• How can we learn object models in the 

presence of clutter?

Vs.



Goal

Slide from Li Fei-Fei http://www.vision.caltech.edu/feifeili/Resume.htm

• Questions:
– What about categories where an iconic 

“template” representation is infeasible?
– What is the object to be recognized / the part 

of the image we want to build a model for?
– For that object, what parts are distinctive or 

things that can be reliably detected in different 
instances?

Weak supervision

Weber, Welling, Perona.  Unsupervised Learning of Models for 
Recognition, ECCV 2000.

W
eber, W

elling, Perona., 2000.

Slide by Bill Freeman, MIT

Slide by Bill Freeman, MIT Slide by Bill Freeman, MIT



Slide by Bill Freeman, MIT Slide by Bill Freeman, MIT

Part-based models

Part-based models

Slide by Fei-Fei Li, 2003.

One possible constellation model

• Model class with joint probability density 
function on shape and appearance

Fi
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image patch descriptors, 
with uncertainty

mutual positions of the 
parts, with uncertainty

Unsupervised learning of part-
based models

Main idea:
• Use interest operator to detect small highly textured 

regions (on both fg and bg)
– If training objects have similar appearance, these 

regions will often be similar in different training 
examples

• Cluster patches: large clusters used to select candidate 
fg parts

• Choose most informative parts while simultaneously 
estimating model parameters
– Iteratively try different combinations of a small 

number of parts and check model performance on 
validation set to evaluate quality

Weber, Welling, Perona, ECCV 2000.

Representation
• Use a scale invariant, scale sensing feature keypoint

detector (like the first steps of Lowe’s SIFT). 
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Features Keys
• A direct appearance model is taken around each located 

key.  This is then normalized to an  11x11 window.  PCA 
further reduces these features.
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Slide by Bill Freeman, MIT

Candidate parts

Weber, Welling, Perona.  Unsupervised Learning of Models for Recognition, 2000.

For faces For cars

At this point, parts appear in both background and foreground of training images.

Model learning

Images from Rob Fergus

Which of the candidate 
parts define the class, and 
in what configuration?

Let’s assume:

• We know number of parts that define the 
model (and can keep it small).

• Object of interest is only consistent thing 
somewhere in each training image.

Model learning
Which of the candidate 
parts define the class, and 
in what configuration?

Initialize model parameters 
randomly.

Iterate while fit improves:
1. Find best assignment in the 

training images given the 
parameters

2. Recompute parameters 
based on current features

Recognition
• Given a model defining the object class and a 

model for “background”, compute likelihood ratio 
to make Bayesian decision:

X: locations

S: scales

A: appearances

Identified in new image:



Recognition
• Given a model defining the object class and a 

model for “background”, compute likelihood ratio 
to make Bayesian decision:

X: locations

S: scales

A: appearances

Use maximum-likelihood 
parameters

Example: data from four categories

Slide from Li Fei-Fei http://www.vision.caltech.edu/feifeili/Resume.htm

Face model

Recognition 
results

Appearance: 10 
patches closest 
to mean for 
each part

Face model

Recognition 
results

Appearance: 10 
patches closest 
to mean for 
each part

Appearance: 10 
patches closest 
to mean for 
each part

Motorbike 
model

Recognition 
results

Appearance: 10 
patches closest 
to mean for 
each part

Spotted cat 
model

Recognition 
results



Outline
• Discriminative classifiers

– SVMs

• Learning categories from weakly supervised images
– Constellation model

• Shape matching
– Shape context, visual CAPTCHA application

Shape and biology

• D’Arcy Thompson: On Growth and Form, 1917
– studied transformations between shapes of 

organisms
Slides adapted from Belongie, Malik, & Puzicha, Matching Shapes, ICCV 2001.
www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/belongie-iccv01 

Shape matching for recognition

model target

Comparing shapes

What points on these two sampled 
contours are most similar?

Shape context descriptor
Count the number of points 
inside each bin, e.g.:

Count = 4

Count = 10

...

Compact representation 
of distribution of points 
relative to each point

Shape context descriptor



Comparing shape contexts
Compute matching costs using 
Chi Squared distance:

Recover correspondences by 
solving for least cost assignment, 
using costs Cij

(Then estimate a parameterized 
transformation based on these 
correspondences.)

CAPTCHA’s

• CAPTCHA: Completely Automated Turing Test 
To Tell Computers and Humans Apart

• Luis von Ahn, Manuel Blum, Nicholas Hopper 
and John Langford, CMU, 2000.

• www.captcha.net

Shape matching application: 
breaking a visual CAPTCHA

• Use shape matching to recognize characters, 
words in spite of clutter, warping, etc.

Recognizing Objects in Adversarial Clutter: Breaking a 
Visual CAPTCHA, by G. Mori and J. Malik, CVPR 
2003

Computer Vision Group
University of California

Berkeley

Fast Pruning: Representative Shape 
Contexts

• Pick k points in the image at random
– Compare to all shape contexts for all known letters
– Vote for closely matching letters

• Keep all letters with scores under threshold

d 
o
p

Slides by Greg Mori, CVPR 2003

Computer Vision Group
University of California

Berkeley

Algorithm A: bottom-up

• Look for letters
– Representative Shape 

Contexts

• Find pairs of letters that 
are “consistent”
– Letters nearby in space

• Search for valid words 

• Give scores to the words

Computer Vision Group
University of California

Berkeley

EZ-Gimpy Results with Algorithm A

• 158 of 191 images correctly identified: 83%
– Running time: ~10 sec. per image (MATLAB, 1 Ghz P3)

horse

smile

canvas

spade

join

here



Computer Vision Group
University of California

Berkeley

Gimpy

• Multiple words, task is to find 3 words in the 
image

• Clutter is other objects, not texture

Computer Vision Group
University of California

Berkeley

Algorithm B: Letters are not enough

• Hard to distinguish single letters with so much clutter
• Find words instead of letters

– Use long range info over entire word
– Stretch shape contexts into ellipses

• Search problem becomes huge
– # of words 600 vs. # of letters 26
– Prune set of words using opening/closing 

bigrams

Computer Vision Group
University of California

Berkeley

Results with Algorithm B
# Correct words % tests (of 24)

1 or more 92%

2 or more 75%

3 33%

EZ-Gimpy 92%dry clear medical

door farm importantcard arch plate

Coming up

• Face images

• For next week:
– Read Trucco & Verri handout on Motion

• Problem set 4 due 11/29
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