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Lecture 19: Motion

Tuesday, Nov 20

• Review Problem set 3
– Dense stereo matching
– Sparse stereo matching

Indexing scenes– Indexing scenes

Effect of window size

W = 3 W = 20

Figures from Li Zhang

Want window large enough to have sufficient intensity 
variation, yet small enough to contain only pixels with 
about the same disparity.

Sources of error in 
correspondences

• Low-contrast  / textureless image regions
• Occlusions
• Camera calibration errorsCamera calibration errors
• Poor image resolution
• Violations of brightness constancy 

(specular reflections)
• Large motions

Sparse matching Indexing scenes
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So far

• Features and filters
• Grouping, segmentation, fitting
• Multiple views, stereo, matching
• Recognition and learning

So far: Features and filters

Transforming and 
describing images; 
textures and colors

So far: Grouping

[fig from Shi et al]
Clustering, 
segmentation, 
fitting; what parts 
belong together?

So far: Multiple views

Lowe

Hartley and Zisserman

Tomasi and Kanade

Multi-view geometry and 
matching, stereo

So far: Recognition and learning

Shape matching, 
recognizing objects 
and categories, 
learning techniques
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Motion and tracking

Tracking objects, video 
analysis, low level motion

Tomas Izo

Outline

• Motion field and parallax
• Optical flow, brightness constancy
• Aperture problem
• Constraints on image motion

Uses of motion

• Analyzing motion can be useful for
– Estimating 3d structure
– Segmentation of moving objects

Tracking objects features over time– Tracking objects, features over time

Image sequences

A digital video is a 
sequence of 
images (frames) 
captured over

Figure by Martial Hebert, CMU

captured over 
time.

Now we consider 
image as a 
function of both 
position and time.

Types of motion in video
• Considering rigid objects – they can rotate and 

translate in the scene.

• Motion may be due to 
– Movement in scene
– Movement of camera (ego motion)

• Geometrically equivalent, however illumination 
effects can make one appear different than the 
other.
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Motion field and apparent motion

Point in the scene

Velocity vector

Figure by Martial Hebert, CMU

Projection of scene point
Apparent 
velocity

Goal: estimate apparent motion, the u and v values 
at each pixel x,y, i.e., u(x,y), v(x,y)

p v

Motion field equations
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Using this and the motion field equation, can 
give expressions for the components of the 
image velocity v...
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Motion field equations
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Motion field equations

• Translational part of image motion depends on 
(unknown) depth of the point

• Motion parallax: image motion is a function of 
both motion in space and depth of each point.

Trucco & Verri Section 8.2.1
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Motion parallax

• http://psych.hanover.edu/KRANTZ/Motion
Parallax/MotionParallax.html

Translational motion

Radial motion 
field if Tz
nonzero.

Length of flow

Figure from Michael Black, Ph.D. Thesis

Length of flow 
vectors inversely 
proportional to 
depth of 3d point

points closer to the camera move more 
quickly across the image plane

Radial motion 
field if Tz
nonzero.

Length of flow

Translational motion

Figure from Michael Black, Ph.D. Thesis

Length of flow 
vectors inversely 
proportional to 
depth of 3d point

Radial motion 
field if Tz
nonzero.

Length of flow

Translational motion

Figure from Michael Black, Ph.D. Thesis

Length of flow 
vectors inversely 
proportional to 
depth of 3d point

Motion vs. Stereo: Similarities

• Both involve solving
– Correspondence: disparities, motion vectors
– Reconstruction

Motion vs. Stereo: Differences
• Motion: 

– Uses velocity: consecutive frames must be 
close to get good approximate time derivative

– 3d movement between camera and scene not 
necessarily single 3d rigid transformation

• Whereas with stereo: 
– Could have any disparity value
– View pair separated by a single 3d 

transformation
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Optical flow problem

Goal: estimate apparent motion, the u and v values 
at each pixel x,y, i.e., u(x,y), v(x,y)

Optical flow problem

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Adapted from Steve Seitz, UW

• What might make it difficult to estimate apparent 
motion?

Brightness constancy

Figure by Michael Black

Spatial coherence

Figure by Michael Black

Temporal smoothness

Figure by Michael Black
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Motion constraints

• To recover optical flow, we need some 
constraints (assumptions)

– Brightness constancy: in spite of motion, image g y p g
measurement in small region will remain the same

– Spatial coherence: assume nearby points belong to 
the same surface, thus have similar motions, so 
estimated motion should vary smoothly.

– Temporal smoothness: motion of a surface patch 
changes gradually over time.

Brightness constancy equation

0=
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dI Total derivative: x and y are 

also functions of time t
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Rewritten as:

This is exactly true in the limit as u and v go to 0, 
for infinitesimal motions.

Brightness constancy equation
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Rewritten as:

Which terms are measurable from images?
How many unknowns in this equation?

Aperture problem

Figure from Michael Black’s Ph.D. Thesis

According to brightness constancy constraint, 
motions that satisfy the optical flow equation are 
only constrained to lie along a line in u,v space.

Aperture problem

• Brightness constancy equation: single equation, 
two unknowns; infinitely many solutions.

• Can only compute projection of actual flow 
vector [u,v] in the direction of the image gradient, 
that is, in the direction normal to the image edge.
– Flow component in gradient direction determined
– Flow component parallel to edge unknown.
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Aperture problem

Slide by Steve Seitz, UW

Aperture problem

Slide by Steve Seitz, UW

Aperture problem

• http://www.psychologie.tu-
dresden.de/i1/kaw/diverses%20Material/www.illusionworks.com/html/barber
_pole.html

Solving the aperture problem
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!

Slide by Steve Seitz, UW

RGB version
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!

Slide by Steve Seitz, UW

Lucas-Kanade flow
Prob:  we have more equations than unknowns

Solution:  solve least squares problem
• minimum least squares solution given by solution (in d) of:

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lucas & Kanade (1981)

Slide by Steve Seitz, UW
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Windows and apparent motion

Slide from Trevor Darrell, MIT

Conditions for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

When is this solvable?
• ATA should be invertible 
• ATA should not be too small

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)

Slide by Steve Seitz, UW

Edge

–gradient strong in one direction
–large λ1, small λ2

Adapted from Steve Seitz, UW

Low texture region

– gradients have small magnitude
– small λ1, small λ2

Slide by Steve Seitz, UW

High textured region

– gradients are different, large magnitudes
– large λ1, large λ2

Slide by Steve Seitz, UW

Good conditions for solving flow

• Recall Harris corner detection
• Good feature windows to track in time can 

be detected independently in a single 
frameframe.
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Revisiting the small motion assumption

Is this motion small enough?
• Probably not—it’s much larger than one pixel (2nd order terms dominate)
• How might we solve this problem?

Slide by Steve Seitz, UW

Reduce the resolution!

Slide by Steve Seitz, UW

u=2 5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

Coarse-to-fine optical flow estimation

run iterative L-K

warp & upsample

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative L-K
.
.
.

Example use of optical flow: 
Motion Paint

Use optical flow to track brush strokes, in order to 
animate them to follow underlying scene motion.

http://www.fxguide.com/article333.html

Coming up

• Problem set 4 due 12/4

More on motion
• Multiple motions and segmentation
• Tracking
• SfM


