Lecture 19: Motion
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Review Problem set 3
— Dense stereo matching
— Sparse stereo matching
— Indexing scenes

Effect of window size

wW=3 W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.

Figures from Li Zhang

Sources of error in
correspondences

« Low-contrast /textureless image regions
 Occlusions

« Camera calibration errors

« Poor image resolution

« Violations of brightness constancy
(specular reflections)

» Large motions

Sparse matching

Indexing scenes
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So far

» Features and filters

< Grouping, segmentation, fitting
Multiple views, stereo, matching
« Recognition and learning

So far: Features and filters
p cereeey
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Transforming and
describing images;
textures and colors

So far: Grouping
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Continuity
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Clustering, .
segmentation, "
qi

fitting; what parts
belong together?

So far: Multiple views

Hartley and Zisserman

Multi-view geometry and
matching, stereo

Tomasi and Kanade

So far: Recognition and learning
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Motion and tracking

Tracking objects, video
analysis, low level motion
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« Motion field and parallax
 Optical flow, brightness constancy
* Aperture problem

« Constraints on image motion

Uses of motion

< Analyzing motion can be useful for
— Estimating 3d structure
— Segmentation of moving objects
— Tracking objects, features over time

[ —
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Figure by Martial Hebert, CMU

o lxyn

Image sequences

Adigital video is a
sequence of
images (frames)
captured over
time.

Now we consider
image as a
function of both
position and time.

Types of motion in video

» Considering rigid objects — they can rotate and
translate in the scene.

* Motion may be due to
— Movement in scene
— Movement of camera (ego motion)

« Geometrically equivalent, however illumination
effects can make one appear different than the
other.




Motion field and apparent motion
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Goal: estimate appar'ent motion, the u and v values
at each pixel x,y, i.e., u(x,y), v(x,y)

Figure by Martial Hebert, CMU
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Motion field equations
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Motion

Translational Angular

moation velocity
Velocity of scene \ e P= [X ,Y, Z]
V=-T-oxP

point described as

Vi=-T,-o,Z+aY
V,=-T, —o,X+0,Z
V,=-T,-o,Y +o,X T

Using this and the motion field equation, can
give expressions for the components of the

image velocity v...

Motion field equations
V,=-T, -0, +awY
V,=-T, —o,X +o,Z

ZvV -V, p =
Vet
V,=-T,-o,Y +o, X
—~,
2
T,x-T,f Xy oOX
Vy =t X —a)yf +w,y+ X y—yi
z f f
Ty-T,f Xy oy’
Translational Rotational
components components
Trucco & Verri Section 8.2.1

Figure by Martial Hebert, CMU

Motion field equations
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Figure by Martial Hebert, CMU.

Motion field equations

Translational part of image motion depends on

(unknown) depth of the point
« Motion parallax: image motion is a function of
both motion in space and depth of each point.

2
T,x-T,f Xy oX
v =t > — o, f +o,y+ fo_yT
Ty-T,f o)Xy . y?
Vy :%'—a)xf +a)ZX+yT_XTy
Translational Rotational
- components components
Trucco & Verri Section 8.2.1




Motion parallax

« http://psych.hanover.edu/KRANTZ/Motion
Parallax/MotionParallax.html
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Translational motion

Radial motion
field if T,
nonzero.

Length of flow
vectors inversely
proportional to
depth of 3d point

Figure 1.2 Tw
optical fiow feld.

taken Froms & Belicopter flying teough a casyon and the compuled

points closer to the camera move more

§ quickly across the image plane
Figure from Michael Black, Ph.D. Thesis

Translational motion

Radial motion
field if T,
nonzero.
<"+, “—| Length of flow
- ", . = vectorsinversely
JPR proportional to

depth of 3d point

Figure from Michael Black, Ph.D. Thesis

Translational motion

Radial motion
field if T,
nonzero.
<"+, *— Length of flow
- ", . ~_ vectorsinversely
JPR proportional to

depth of 3d point

Figure from Michael Black, Ph.D. Thesis

Motion vs. Stereo: Similarities

 Both involve solving
— Correspondence: disparities, motion vectors
— Reconstruction

Motion vs. Stereo: Differences

* Motion:

— Uses velocity: consecutive frames must be
close to get good approximate time derivative

— 3d movement between camera and scene not
necessarily single 3d rigid transformation

* Whereas with stereo:
— Could have any disparity value

— View pair separated by a single 3d
transformation
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Optical flow problem

Optical flow problem

PN °
o I o .
H(z,y) I(z,y)

How to estimate pixel motion from image H to image 1?

« Solve pixel correspondence problem
— given a pixel in H, look for[nearbylpixels of the[same colo} in |

Goal: estimate apparent motion, the u and v values
at each pixel x,y, i.e., u(x,y), v(x.y)

Adapted from Steve Seitz, UW

Brightness constancy

* What might make it difficult to estimate apparent
motion?

Figure 1.5: Data conservation assumption. The highlighted region in the right image looks
roughly the same as the region in the keft image, despite the Fact that it has moved

Figure by Michael Black

Spatial coherence Temporal smoothness
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Figure 1.7: Spatial coherence assumption. Neighboring podnts in the image are assumed to Figure 1.8: Temporal cc 0 have the
belong 1o the same surface in the scene. samse motion (constant o acoe keration) over time.
Figure by Michael Black Figure by Michael Black
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Motion constraints

» To recover optical flow, we need some
constraints (assumptions)

-- Brightness constancy: in spite of motion, image
measurement in small region will remain the same

-- Spatial coherence: assume nearby points belong to
the same surface, thus have similar motions, so
estimated motion should vary smoothly.

— Temporal smoothness: motion of a surface patch
changes gradually over time.

Brightness constancy equation

(z.9)
o
NJisplacement

o
(z+uy+v)

Iy t) = Ha+dx,y+dy, 0+ 1)
= (& +udl,y+vdl 4+ 81)

d7| -0 Total derivative: x and y are

dt - also functions of time t
allax| [orfdy | a1
= — + it —
o o dt| (oy|dt | ot temporal
spatial image derivatives,
gradients uand v

Brightness constancy equation

o @] o _,
shorthand: I, :% ox dt| oyldt| ot

Rewritten as: L,.N_ + fy'{.‘ -+ L =0,

Vita+1,=0.

This is exactly true in the limit as u and v go to O,
for infinitesimal motions.

Brightness constancy equation

ala] [y a _,
shorthand: Il.:% o dt| oyldt| ot

Rewritten as: L,.N_ + fy'{.‘ -+ L =0,

Vita+1,=0.

Which terms are measurable from images?
How many unknowns in this equation?

Aperture problem

Vitu+ 1, =0.

According to brightness constancy constraint,
motions that satisfy the optical flow equation are
only constrained to lie along a line in u,v space.

Figure from Michael Black's Ph.D. Thesis

Aperture problem
Vitu+1,=0.

» Brightness constancy equation: single equation,
two unknowns; infinitely many solutions.

¢ Can only compute projection of actual flow
vector [u,v] in the direction of the image gradient,
that is, in the direction normal to the image edge.
— Flow component in gradient direction determined
— Flow component parallel to edge unknown.




Aperture problem

Slide by Steve Seitz, UW
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Aperture problem

Slide by Steve Seitz, UW

Aperture problem

Barber Pole

e =3 L
« http://www.psychologie.tu-
dresden.de/il/kaw/diverses%20Material/www.illusionworks.com/html/barber
pole.html

Solving the aperture problem

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0 =1:(pi) + VI(py) - [u 0]

I:(p1)  Iy(p1) Ii(p1)
Ie(p2)  Iy(p2) [ u ] — _ | I(p2)
: 3 v :
I:(p2s) Iy(pas) Ii(p2s)
A d b
25x2 2x1 25x1

Slide by Steve Seitz, UW

RGB version

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

0 =Ii(pp[0,1,2] + VI(p;)[0,1,2] - [u v]

L(p1)[0]  1y(p1)[0] 1¢(p1)[0]
L(p)[1]  Iy(p)[1] I(p1)[1]
L-(l-"_l)[Q] f.u(p_L)[zl [ ”] _ f!(l-"ll)lzl
L:(p2)[0] Iy(p2s)(0] | LV Ii(p25)[0]
I:(p2s)[1] Ty(p2s)(i] 1i(p2s)(1]
Le(p2s)[2] 1y(p2s)(2] 11(p25)(2]
A d b
75x2 2x1 75x1

Slide by Steve Seitz, UW

Lucas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad - b|?
25x2 2x1 25x1

Solution: solve least squares problem
« minimum least squares solution given by solution (in d) of:

(ATA) d= AT

2x2 2x1 2x1

Yolede 3 Iy w__ Y iaely
Y lely Y Iyly v 2yl
AT A ATy

« The summations are over all pixels in the K x K window
« This technique was first proposed by Lucas & Kanade (1981)

Slide by Steve Seitz, UW




Windows and apparent motion

Slide from Trevor Darrell, MIT
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Conditions for solvability

« Optimal (u, v) satisfies Lucas-Kanade equation

Yolede 3 Iy w__ Y iaely
SLly Sy || v S IyL
ATA ATy

When is this solvable?
< ATA should be invertible
« ATA should not be too small
— eigenvalues 2, and %, of ATA should not be too small
« ATA should be well-conditioned
— Ayl &, should not be too large (1, = larger eigenvalue)

Slide by Steve Seitz, UW

—gradient strong in one direction
—large A,, small &,

Adapted from Steve Seitz, UW

Low texture region

- gradients have small magnitude
—small &,, small &,

Slide by Steve Seitz, UW

High textured region

- gradients are different, large magnitudes' "
—large A4, large A, ’

Slide by Steve Seitz, UW

Good conditions for solving flow

* Recall Harris corner detection

¢ Good feature windows to track in time can
be detected independently in a single
frame.




11/20/2007

Revisiting the small motion assumption

Is this motion small enough?
« Probably not—it's much larger than one pixel (2" order terms dominate)
« How might we solve this problem?

Slide by Steve Seitz, UW.

Reduce the resolution!

Slide by Steve Seitz, UW

Coarse-to-fine optical flow estimation

u=1.25 pixels -

u=2.5 pixels

Gaussian pyramid of image H Gaussian pyramid of image |

Coarse-to-fine optical flow estimation

lwarp & upsample

.+’ run iterative L-K +——

Gaussian pyramid of image |

Gaussian pyramid of image H

Example use of optical flow:
Motion Paint

Use optical flow to track brush strokes, in order to
animate them to follow underlying scene motion.

http://iwww.fxguide.com/article333.html

Coming up

* Problem set 4 due 12/4

More on motion

« Multiple motions and segmentation
 Tracking

o SfM
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