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* Review Problem set 3
— Dense stereo matching
— Sparse stereo matching
— Indexing scenes
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Effect of window size

W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.

Figures from Li Zhang
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Sources of error In
correspondences

Low-contrast / textureless image regions
Occlusions

Camera calibration errors

Poor image resolution

Violations of brightness constancy
(specular reflections)

e Large motions
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Sparse matching
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Indexing scenes
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So far

Features and filters

Grouping, segmentation, fitting
Multiple views, stereo, matching
Recognition and learning
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So far: Features and filters
fee ‘f

256 128 64
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Transforming and
describing images;
textures and colors
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‘DQ Closure

Clustering,
segmentation,
fitting; what parts
belong together?

So far: Grouping
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So far: Multiple views

Hartley and Zisserman

Multi-view geometry and
matching, stereo

Tomasi and Kanade
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So far: Recognition and learning

r _ &,

»
e *|l

Shape matching,
recognizing objects .
and categories, \

learning techniques O g
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11113

11115

Rapid Object Detection

using a Boosted Cascade
of Simple Features_by P.
Viola and M. Jones_2001.

FP 22.5: SVMs

Learning Gender with
Support Faces, by B.
Moghaddam and M.

Yang. TPAMI 2002, F&
2000

Unsupervised Learning of
Models for Recognition
by M. Weber, M. Welling
and P. Perona, ECCV
2000.

Object Class Recognition
by Unsupervised Scale-
Invariant L earning, by R.
Fergus P_Perona, and A
Zisserman, CVPR 2003.

slides fullpage
(faces part 2,
detection, boosting)

slides fullpage
(SVMs,

unsupervised model
learning)

Pset 4 files

11/20 Motion, optical | Trucco & Vern handout
flow, tracking

11/27

11/29

1214 Pset 4 due 12/4

12/6 Wrap-up Graduate students’
reviews and
extensions due

12113 Final exam
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Motion and tracking

Tracking objects, video SER

analysis, low level motion b

D S
...............

...............

Tomas Izo
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Outline

Motion field and parallax

Optical flow, brightness constancy
Aperture problem

Constraints on image motion
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Uses of motion

* Analyzing motion can be useful for
— Estimating 3d structure
— Segmentation of moving objects
— Tracking objects, features over time
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Image sequences

- A digital video is a
- sequence of
images (frames)
__Ixys Captured over

E— time.

Now we consider
Image as a
function of both
position and time.

Figure by Martial Hebert, CMU
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Types of motion in video

» Considering rigid objects — they can rotate and
translate in the scene.

* Motion may be due to
— Movement in scene
— Movement of camera (ego motion)

« Geometrically equivalent, however illumination
effects can make one appear different than the
other.
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Motion field and apparent motion

e P(f+(jf) \
Py Point in the scene

dp

V = dP/dt _
Velocity vector

i = dx/dr
v =dyldt \
T (dx.dy). Q
Projection of scene point
Apparent
velocity

Goal: estimate apparent motion, the u and v values
at each pixel x,y, i.e., u(x,y), v(x,y)

Figure by Martial Hebert, CMU
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Motion field equations

P(t+dr)
P(r) /* _ P
_— dP I"-I‘I (Blg V) p e f -
\ V = dP/dr /
V=V, V,.V,]
Take the time derivative
u = d/dt of both sides:
v = dvldt
(dxy) B ZV -V,P

(thtle V) v=f >
/

Figure by Martial Hebert, CMU
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Motion V=[V.V,.V.]
Translational ~ Angular 0=|a, C()y 4y J
motion velocity
Velocity of scene \ ' P= [X Y, Z]

point described as V=-T-woxP

Vi=-T,-o,Z+0,Y

V,=-T, -0, X +0,Z

V,=-T,-0Y +o X
Using this and the motion field equation, can

. . et /
give expressions for the components of the /i
image velocity v... / = /
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Motion field equations

P(t+dr)
P(r) /* _ P
_— dP I"-I‘I (Blg V) p e f -
\ V = dP/dr /
vV=[V,V,V,]
Take the time derivative
u = d/dt of both sides:
v = dvldt
(dxy) B ZV -V,P

(thtle V) v=f >
/

Figure by Martial Hebert, CMU
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Motion field equations

Vi=-T,-o,Z+0,Y

/V -\ P —_T —
v f \Y AE V,=-T,—o,X+0 .l
4 V, =-T,-0Y +o,X
_ o/
—~
2
Tx-T,f o, Xy @X
VX: Z 5 X -—a)yf+a)zy+ X y_ yf
T,y-T,f oXy @y°
v, =— - o f o, x+———— Xfy
Translational Rotational
components components
Trucco & Verri Section 8.2.1
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Motion field equations

« Translational part of image motion depends on
(unknown) depth of the point

* Motion parallax: image motion is a function of
both motion in space and depth of each point.

2
Tx-T, f o, Xy @X
VX: Z 5 X -—a)yf+a)zy+ Xfy_ yf
Ty-T f o, Xy o, V°
v, =— - Lo f+o,Xx+ yf — Xfy
Translational Rotational
components components
Trucco & Verri Section 8.2.1
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Motion parallax

e http://psych.hanover.edu/KRANTZ/Motion
Parallax/MotionParallax.html
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Translational motion

Radial motion

ey field if T,

b s s e m o I

ot LSRR nonzero.
PO A R R S 2N

CoCCLCIIIIiviiiiinininy

coocnninitiie ) Length of flow
GRS vectors inversel
A Y
AEAEEEIEEI ) proportional to

depth of 3d point

Figure 1.2: Two images taken from a helicopter flying through a canyon and the computed
optical flow field.

points closer to the camera move more

, . . quickly across the image plane
Figure from Michael Black, Ph.D. Thesis
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Translational motion

Figure from Michael Black, Ph.D. Thesis

Radial motion
field if T,
nonzero.

Length of flow
vectors inversely
proportional to
depth of 3d point
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Translational motion

i i

Figure from Michael Black, Ph.D. Thesis

Radial motion
field if T,
nonzero.

Length of flow
vectors inversely
proportional to
depth of 3d point
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Motion vs. Stereo: Similarities

* Both involve solving
— Correspondence: disparities, motion vectors
— Reconstruction
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Motion vs. Stereo: Differences

e Motion:

— Uses velocity: consecutive frames must be
close to get good approximate time derivative

— 3d movement between camera and scene not
necessarily single 3d rigid transformation

 Whereas with stereo:
— Could have any disparity value

— View pair separated by a single 3d
transformation
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Optical flow problem

++++++

............

N L

........

Goal: estimate apparent motion, the u and v values

at each pixel x,y, i.e., u(x,y), v(x,y)
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Optical flow problem

./ Q °

N .
o—> i (o] .
H(z,y) I(z,y)

How to estimate pixel motion from image H to image 1?
» Solve pixel correspondence problem

— given a pixel in H, look for[nearby]pixels of the[same colol in |

Adapted from Steve Seitz, UW

32



11/20/2007

 What might make it difficult to estimate apparent
motion?

33
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Brightness constancy

Figure 1.5: Data conservation assumption. The highlighted region in the right image looks
roughly the same as the region in the left image, despite the fact that it has moved.

Figure by Michael Black

34



11/20/2007

Spatial coherence

Image Plane

Figure 1.7: Spatial coherence assumption. Neighboring points in the image are assumed to
belong to the same surface in the scene.

Figure by Michael Black
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Temporal smoothness

Figure 1.8: Temporal continuity assumption. A patch in the image is assumed to have the
same motion (constant velocity, or acceleration) over time.

Figure by Michael Black
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Motion constraints

» To recover optical flow, we need some
constraints (assumptions)

-- Brightness constancy: in spite of motion, image
measurement in small region will remain the same

-- Spatial coherence: assume nearby points belong to
the same surface, thus have similar motions, so
estimated motion should vary smoothly.

— Temporal smoothness: motion of a surface patch
changes gradually over time.

37
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Brightness constancy equation

(=,y)
. .
\dlsplacement = (u,v

(o]
(z +u,y +v)

Hx,y,t) = [{x+dx,y+ oy, t+ dl)
= [(x 4+ udl,y+ vol,l + ot)

di 0 Total derivative: x and y are

dt also functions of time t
oljdx| (ol dy | ol
= —] + .|_
o ox| dt| [oy|dt | ot temporal
spatial image derivatives,
gradients u and v

38
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Brightness constancy equation

ol

dx

ol

shorthand: I, = % OX

dt

oy

dy
dt

ol

+—=0
ot

u

\Y

Rewritten as: [ .1 + [y'() + [, =0

Vitu+ 1 =0

This is exactly true in the limit as u and v go to O,
for infinitesimal motions.
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Brightness constancy equation

ol

dx

ol

shorthand: I, = % OX

dt

oy

dy
dt

ol

+—=0
ot

u

\Y

Rewritten as: [ .1 + [y'() + [, =0

Vitu+ 1 =0

Which terms are measurable from images?
How many unknowns in this equation?

40
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Aperture problem

Vitud+ I, =0

k24 .

According to brightness constancy constraint,
motions that satisfy the optical flow equation are
only constrained to lie along a line in u,v space.

Figure from Michael Black’s Ph.D. Thesis
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Aperture problem
Vi'u+ 1, =0

* Brightness constancy equation: single equation,
two unknowns; infinitely many solutions.

e Can only compute projection of actual flow
vector [u,Vv] in the direction of the image gradient,
that is, in the direction normal to the image edge.

— Flow component in gradient direction determined
— Flow component parallel to edge unknown.

42
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Aperture problem

Slide by Steve Seitz, UW
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Aperture problem

Slide by Steve Seitz, UW
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Aperture problem
| BarberPole

| | |
1 I |
http://www.psychologie.tu-

dresden.de/il/kaw/diverses%20Material/www.illusionworks.com/html/barber
_pole.html
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Solving the aperture problem

How to get more equations for a pixel?

* Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0 = Ii(py) + VI(py) - [u v]

| Ix(p1) Iy(p1) | [ Ii(p1) |
I:(p2) Iy(p2) ! u ] _ | Ir(p2)
i Ix(ll325) I’y(I.)25) l i It(I;25) ]
2A2 2d1 ’

Slide by Steve Seitz, UW
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RGB version

How to get more equations for a pixel?

* Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25*3 equations per pixel!

0= -[t(pl)[o7 17 2] + Vf(pl)[O, 17 2] ’ [U ’U]

[ L:.(p1)[0] I,(p1)[0] [ I;(p1)[0] ]
Ix(p1)[1]  Iy(p1)[1] Iy (p1)[1]
Ix(p_l)[2] f-;;(P})[2] [u ] 15(1)_1)[2]
Lo(p2s)[0] Iy(p2s)[0] | L ° 11(p25)[0]
I:(p25)[1] Iy(p2s)[1] Ii(p25)[1]

| Ix(p25)[2] Iy(p2s)[2] | It(p25)[2] |

A d b
75%x2 2x1 75x1

Slide by Steve Seitz, UW
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Lucas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad—bl|?
25x2 2x1 25x1

Solution: solve least squares problem
¢ minimum least squares solution given by solution (in d) of:

(ATA) d= ATy

2%2 2x1 2x1

AT A Ald

g 24t)[3) [

 The summations are over all pixels in the K x K window

» This technigue was first proposed by Lucas & Kanade (1981)

Slide by Steve Seitz, UW
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Windows and apparent motion

Slide from Trevor Darrell, MIT
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Conditions for solvability

e Optimal (u, v) satisfies Lucas-Kanade equation

Do lply ) Ixly w| _ | Il
Yo Ioly > Iyly v | > Iyl

AT A ATy
When is this solvable?

e ATA should be invertible
e ATA should not be too small

— eigenvalues L, and X, of ATA should not be too small

* ATA should be well-conditioned

— A/ A, should not be too large (A, = larger eigenvalue)

Slide by Steve Seitz, UW
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—gradient strong in one direction
—large A, small A,

Adapted from Steve Seitz, UW
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Low texture region

50 100 1580 200 250 300 350

8% 53 8 8

— gradients have small magnitude
—small &, small A,

Slide by Steve Seitz, UW
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High textured region

— large A4, large A,

Slide by Steve Seitz, UW

— gradients are different, large magnitudes ' -
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Good conditions for solving flow

 Recall Harris corner detection

 Good feature windows to track in time can
be detected independently in a single
frame.
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Revisiting the small motion assumption

Is this motion small enough?
» Probably not—it's much larger than one pixel (2" order terms dominate)
* How might we solve this problem?
Slide by Steve Seitz, UW
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Reduce the resolution!

Slide by Steve Seitz, UW
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Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

Gaussian pyramid of image H

Gaussian pyramid of image |
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Coarse-to-fine optical flow estimation

iy

\

)
1
I’\
[ AN
IR
1
I
[
\
I,l N
o ‘ \

1
’ [
1
1
1

— run iterative L-K _'

warp & upsample

v

*—’ run iterative L-K ‘—'

Gaussian pyramid of image |

Gaussian pyramid of image H
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Example use of optical flow:
Motion Paint

Use optical flow to track brush strokes, in order to
animate them to follow underlying scene motion.

http://www.fxguide.com/article333.html
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Coming up

 Problem set 4 due 12/4

More on motion

« Multiple motions and segmentation

» Tracking
o SftM
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