

Why do we need color for visual processing?

- BRDF is a very general notion
 - some surfaces need it (underside of a CD; tiger eye; etc)
 - very hard to measure
 - illuminate from one direction, view from another, repeat
 - very unstable
 - minor surface damage can change the BRDF
 - e.g. ridges of oil left by contact with the skin can act as lenses
- For many surfaces, light leaving the surface is largely independent of exit angle

Examples of subtractive color systems

- Printing on paper
- Crayons
- Most photographic film

Measuring color by color-matching

- · Pick a set of 3 primary color lights.
- Find the amounts of each primary, e₁, e₂, e₃, needed to match some spectral signal, t.
- If you have some other spectral signal, s, and s matches t perceptually, then e_1 , e_2 , e_3 will also form a match for s, by Grassman's laws.
- · Useful:
 - Predict the color of a new spectral signal
 - Translate to representations using other primary lights.

apted from W. Freemar

- Want the colors in the world, on a monitor, and in a print format to all look the same.

dapted from W. Freeman

Image credit: pbs.org

- any set of primaries: 1. Select primaries
- 2. Estimate their color matching functions: observer matches series of monochromatic lights, one at each wavelength

- - Spectral radiance of light falling on that patch
- Color perceived depends on
 - Physics of light
 - Visual system receptors
 - Brain processing, environment

Color matching ~= color appearance Physics of light ~= perception of light

Name that color

Blue Red Green Cyan Magenta Black Pink Yellow Orange Violet Brown Purple Cyan Indigo Red Green Blue

Matlab