Lecture 20: Tracking

Tuesday, Nov 27

Paper reviews

» Thorough summary in your own words
» Main contribution

» Strengths? Weaknesses?

* How convincing are the experiments?
» Suggestions to improve them?

» Extensions?

* 4 pages max

May require reading additional references

(This is list from 8/30/07 lecture)

What to submit for the extension

Include:

» Goal of the extension

» Summarize implementation strategy
» Analyze outcomes

» Show figures as necessary

For both, submit as hardcopy, due by the
end of the day on 12/6/07.

Outline

 Last time: Motion
— Motion field and parallax
— Optical flow, brightness constancy
— Aperture problem
e Today: Warping and tracking
— Image warping for iterative flow
— Feature tracking (vs. differential)
— Linear models of dynamics
— Kalman filters

Last time: Optical flow problem
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How to estimate pixel motion from image H to image 1?

« Solve pixel correspondence problem
— given a pixel in H, look for nearby pixels of the same color in |

Adapted from Steve Seitz, UW

Last time: Motion constraints

» To recover optical flow, we need some
constraints (assumptions)

— Brightness constancy: in spite of motion, image
measurement in small region will remain the same

— Spatial coherence: assume nearby points belong to
the same surface, thus have similar motions, so
estimated motion should vary smoothly.

— Temporal smoothness: motion of a surface patch
changes gradually over time.




Last time: Brightness constancy equation
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Last time: Aperture problem

Vitu+1,=0

» Brightness constancy equation: single equation,
two unknowns; infinitely many solutions.

» Can only compute projection of actual flow
vector [u,V] in the direction of the image gradient,
that is, in the direction normal to the image edge.
— Flow component in gradient direction determined
— Flow component parallel to edge unknown.

Last time: Solving the aperture problem

How to get more equations for a pixel?
« Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally
— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!
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Adapted from Steve Seitz, UW

Last time: Lucas-Kanade flow

Prob: we have more equations than unknowns

A d=b —— minimize ||Ad - b|?
25x2 2x1 25x1

Solution: solve least squares problem
+ minimum least squares solution given by solution (in d) of:

(ATA) d= ATb

2x2 2x1 2x1

SLle S [u] _ [ S5
Yoledy 3 Iyly v Iyl
AT 4 ATy

* The summations are over all pixels in the K x K window
« This technique was first proposed by Lucas & Kanade (1981)

Slide by Steve Seitz, UW

Difficulties

» When will this flow computation fail?

— If brightness constancy is not satisfied
* E.g., occlusions, illumination change...

— If the motion is not small
« derivative estimates poor

— If points within window neighborhood do not

move together

« E.g., if window size is too large

Image warping

f(x) oY)

Given a coordinate transform and a source image
f(x,y), how do we compute a transformed
image g(xy’) = f(T(x.y))?

Slide from Alyosha Efros, CMU




Inverse warping

Get each pixel g(x',y’) from its corresponding location
(x,y) = TY(x",y") in the first image

Q: what if pixel comes from “between” two pixels?

Slide from Alyosha Efros, CMU

Inverse warping
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Get each pixel g(x',y’) from its corresponding location
(x,y) = T(x,y’) in the firstimage
Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
— nearest neighbor, bilinear...

Slide from Alyosha Efros, CMU

Bilinear interpolation
Sampling at f(x,y):
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(i, 5) (i+1.5)
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Slide from Alyosha Efros, CMU

Iterative flow computation
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To iteratively refine flow estimates, repeat until warped
version of first image very close to second image:

« compute flow vector [u, V]

« warp image toward the other using estimated flow field

Eigure from Martial Hebert, CMU

Feature Detection
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Tracking features

Feature tracking
« Compute optical flow for that feature for each consecutive frame pair

When will this go wrong?
+ Occlusions—feature may disappear
— need mechanism for deleting, adding new features
+ Changes in shape, orientation
— allow the feature to deform
+ Changes in color
« Large motions

Adapted from Steve Seitz, UW.




Handling large motions

Derivative-based flow computation requires small motion.
« If the motion is much more than a pixel, use discrete search instead

[-]

H(x,y) I(x,y)
« Given feature window W in H, find best matching window in |
« Minimize sum squared difference (SSD) of pixels in window

Min(, ) 3> Ha+uy+v) - H(r, 2
(xy)EW

« Solve by doing a search over a specified range of (u,v) values

— this (u,v) range defines the search window
Adapted from Steve Seitz, UW

» For a discrete matching search, what are the
tradeoffs of the chosen search window size?

Summary: Motion field estimation

« Differential techniques
— optical flow: use spatial and temporal variation
of image brightness at all pixels
—assumes we can approximate motion field by
constant velocity within small region of image
plane
¢ Feature matching techniques
— estimate disparity of special points (easily
tracked features) between frames
— sparse

Think of stereo matching: same as estimating motion if we
have two close views or two frames close in time.

» Tracking with features: where should the
search window be placed?
— Near match at previous frame

— More generally, according to expected
dynamics of the object

Detection vs. tracking

Detection vs. tracking

Detection: We detect the object independently in
each frame and can record its position over time,
e.g., based on blob’s centroid or detection
window coordinates




Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
i.e., our expectation of object’'s motion pattern.

General assumptions

« Expect motion to be continuous, so we can
predict based on previous trajectories

— Camera is not moving instantly from viewpoint
to viewpoint

— Objects do not disappear and reappear in
different places in the scene

— Gradual change in pose between camera and
scene

« Able to model the motion

Tracking as inference: Bayes Filters

= Hidden state x,
— The unknown true parameters
— E.g., actual position of the person we are tracking

= Measurementy,
— Our noisy observation of the state
— E.g., detected blob’s centroid

= Can we calculate p(X; | Y1, Y2, s Y0 ?

— Want to recover the state from the observed
measurements

Goal of tracking

« Have a model of expected motion

« Given that, predict where objects will occur in
next frame, even before seeing the image

* Intent:

—do less work looking for the object, restrict
search

— improved estimates since measurement noise
tempered by trajectory smoothness

Example of Bayesian Inference
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Slide by Sebastian Thrun and Jana Kosecka, Stanford Universit

Idea of recursive estimation
« Goal: Find estimate ¢ of state & HsoasurEry
such that the least square ‘
error between measurements '

s

and the state is minimum  State variab

v

Note temporary change of notation: state
is a, and measurement at time step i is x;.

Adapted from Cornelia Fermiiller, UMD.




Idea of recursive estimation
« Goal: Find estimate ¢ of state & h
such that the least square ‘
error between measurements i
and the state is minimum  State variabl

Adapted from Cornelia Fermiiller, UMD.

Idea of recursive estimation
« Goal: Find estimate ¢ of state & h
such that the least square ‘
error between measurements ” |
and [he state 1S minimum  State variabl

Adapted from Cornelia Fermiiller, UMD.

Idea of recursive estimation

* We don’t want to wait until
all data have been collected
to get an estimate ¢ of the
depth :

» We don’t want to reprocess State variablg
old data when we make a a
new measurement

» Recursive method: data at 4
step 7 are obtained from « -
data at step i-1 a. . 4a,

Adapted from Cornelia Fermiiller, UMD.

Idea of recursive estimation

* Recursive method: data at
step / are obtained from
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Adapted from Cornelia Fermiiller, UMD.

Idea of recursive estimation
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Adapted from Comelia Fermiiller, UMD.

Idea of recursive estimation

* Recursive method: data at
step / are obtained from
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Adapted from Cornelia Fermiiller, UMD.




Idea of recursive estimation

» Recursive method: data at
step / are obtained from

E a
data at step i-1 ' s
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Adapted from Cornelia Fermiiller, UMD.

Inference for tracking

* Recursive process:

— Assume we have initial prior that predicts
state in absence of any evidence: P(X,)

— At the first frame, correct this given the value
of Yo=Y,

— Given corrected estimate for frame t

« Predict for frame t+1
« Correct for frame t+1 /7 \

Tracking as inference

* Prediction:
— Given the measurements we have seen up to
this point, what state should we predict?

1”(X5|Y1] y“”.”Y,; 1 Y, |).

 Correction:
— Now given the current measurement, what
state should we predict?

f}{_.X,|Y[, =Ygy Y:=1v,)

Assume independences to simplify

« Only immediate past state influences
current state

P(Xi| X1, Xio1) = P(Xil Xi_1)

» Measurements at time t only depend on
the current state

P(Y.,Y;, .. Y| X:)=P(Y|X)P(Y;,..., YilX:)

Base case

P(yy| Xo)P(Xo)

P(XolYo=1yo) = P(yy)
0

x P(yo|Xo)P(Xo)

Induction step: prediction

Prediction

Prediction involves representing
P(Xilyg,-- - Yi_1)
given
P(Xialwgs o Wiza)-
Our independence assumptions make it possible to write
P(Xilyos---» Wi-1) /.!’:X..X. Uttas oo oo Wiz )Xy
/.!’:X. Xicttge - Wi )P Xica|pgs - - o Wi X i

[P:_x._\. DP(X i alWes - Wiy )Xy




Induction step: correction Inference for tracking

Correction

Correction involves obtaining a representation of

* Goal is then to

PiXvg .- 1) .
! g — choose good model for the prediction and
given correction distributions
P(X|Wosee i1 — use the updates to compute best estimate of

State
« Prior to seeing measurement
« After seeing the measurement

Our independence assumptions make it possible to write

PN o 7PN T ¥ o | T T |

Plyg. - w)

Pl | XOP(X vy - 9y

Ply | X P(Xlyg - - Yiy)
[ Py, X)P(Xilug, ..., )dX;

» We stopped here on Tuesday, to be
continued on Thursday.




