Lecture 20: Tracking

Tuesday, Nov 27

Paper reviews

- Thorough summary in your own words
- Main contribution
- Strengths? Weaknesses?
- How convincing are the experiments?
- Suggestions to improve them?
- Extensions?
- 4 pages max

May require reading additional references

(This is list from 8/30/07 lecture)

What to submit for the extension

Include:

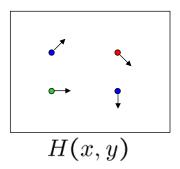
- Goal of the extension
- Summarize implementation strategy
- Analyze outcomes
- Show figures as necessary

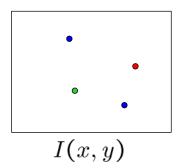
For both, submit as hardcopy, due by the end of the day on 12/6/07.

Outline

- Last time: Motion
 - Motion field and parallax
 - Optical flow, brightness constancy
 - Aperture problem
- Today: Warping and tracking
 - Image warping for iterative flow
 - Feature tracking (vs. differential)
 - Linear models of dynamics
 - Kalman filters

Last time: Optical flow problem





How to estimate pixel motion from image H to image I?

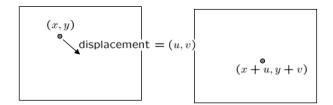
- Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I

Adapted from Steve Seitz, UW

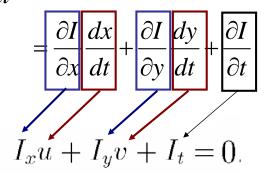
Last time: Motion constraints

- To recover optical flow, we need some constraints (assumptions)
 - Brightness constancy: in spite of motion, image measurement in small region will remain the same
 - Spatial coherence: assume nearby points belong to the same surface, thus have similar motions, so estimated motion should vary smoothly.
 - Temporal smoothness: motion of a surface patch changes gradually over time.

Last time: Brightness constancy equation



$$\frac{dI}{dt} = 0$$
 Total derivative: x and y are also functions of time t



Rewritten:

 $\nabla I^T \mathbf{u} + I_t = 0.$

spatial gradients: how image varies in x or y direction for fixed time

temporal gradient: how image varies in time for fixed position

temporal derivatives, u and v: rate of change in x and y

Last time: Aperture problem

$$\nabla I^T \mathbf{u} + I_t = 0.$$

- Brightness constancy equation: single equation, two unknowns; infinitely many solutions.
- Can only compute projection of actual flow vector [u,v] in the direction of the image gradient, that is, in the direction normal to the image edge.
 - Flow component in gradient direction determined
 - Flow component parallel to edge unknown.

Last time: Solving the aperture problem

How to get more equations for a pixel?

- Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25 equations per pixel!

$$\nabla I^T \mathbf{u} + I_t = 0$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$A \qquad d \qquad b$$

$$25 \times 2 \qquad 2 \times 1 \qquad 25 \times 1$$

Adapted from Steve Seitz, UW

Last time: Lucas-Kanade flow

Prob: we have more equations than unknowns

$$\begin{array}{ccc}
A & d = b \\
25 \times 2 & 2 \times 1 & 25 \times 1
\end{array}$$
 minimize $||Ad - b||^2$

Solution: solve least squares problem

• minimum least squares solution given by solution (in d) of:

$$(A^T A) \underset{2 \times 2}{d} = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A$$

$$A^T b$$

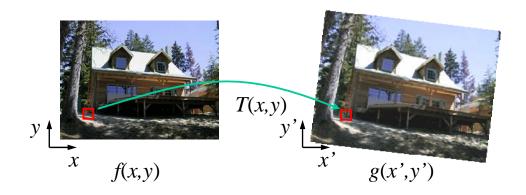
- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)

Slide by Steve Seitz, UW

Difficulties

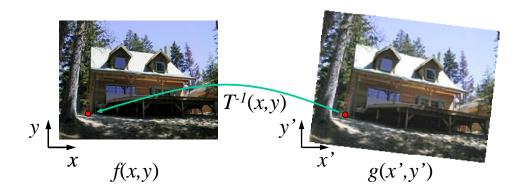
- When will this flow computation fail?
 - If brightness constancy is not satisfied
 - E.g., occlusions, illumination change...
 - If the motion is not small
 - derivative estimates poor
 - If points within window neighborhood do not move together
 - E.g., if window size is too large

Image warping



Given a coordinate transform and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

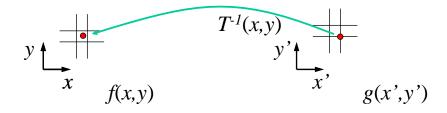
Inverse warping



Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Inverse warping



Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

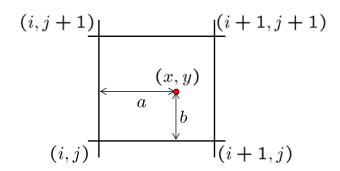
Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

- nearest neighbor, bilinear...

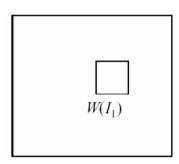
Bilinear interpolation

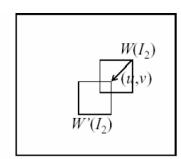
Sampling at f(x,y):



$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Iterative flow computation



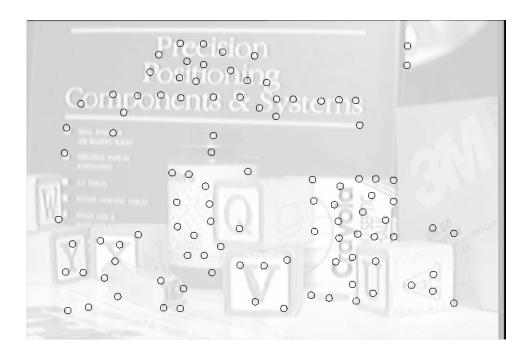


To iteratively refine flow estimates, repeat until warped version of first image very close to second image:

- compute flow vector [u, v]
- warp image toward the other using estimated flow field

Figure from Martial Hebert, CMU

Feature Detection



Tracking features

Feature tracking

• Compute optical flow for that feature for each consecutive frame pair

When will this go wrong?

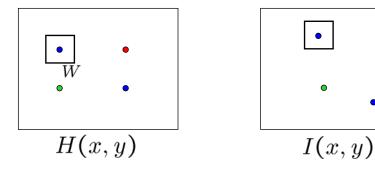
- Occlusions—feature may disappear
 - need mechanism for deleting, adding new features
- Changes in shape, orientation
 - allow the feature to deform
- · Changes in color
- Large motions

Adapted from Steve Seitz, UW

Handling large motions

Derivative-based flow computation requires small motion.

• If the motion is much more than a pixel, use discrete search instead

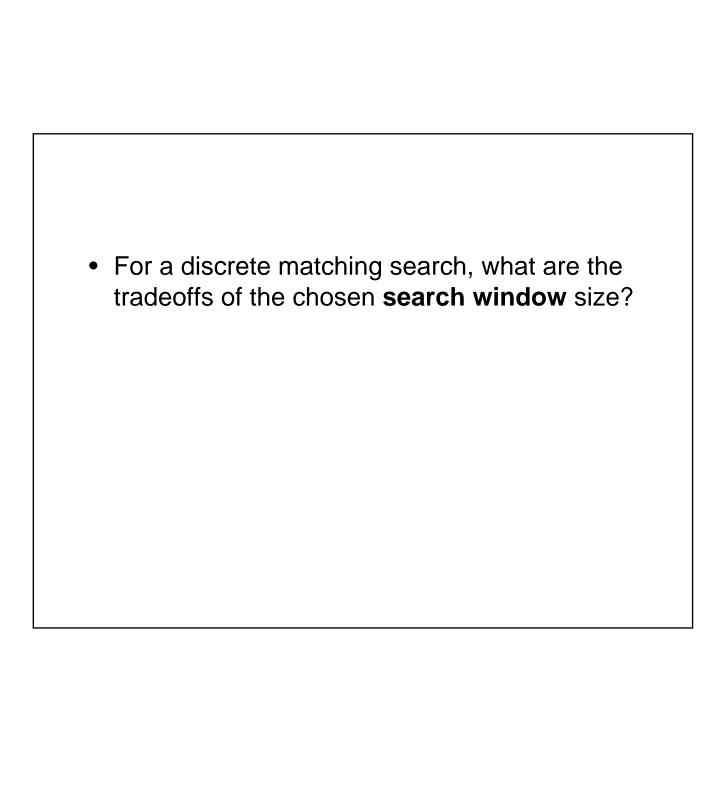


- Given feature window W in H, find best matching window in I
- Minimize sum squared difference (SSD) of pixels in window

$$min_{(u,v)} \left\{ \sum_{(x,y) \in W} |I(x+u,y+v) - H(x,y)|^2 \right\}$$

- Solve by doing a search over a specified range of (u,v) values
 - this (u,v) range defines the **search window**

Adapted from Steve Seitz, UW



Summary: Motion field estimation

Differential techniques

- optical flow: use spatial and temporal variation of image brightness at all pixels
- assumes we can approximate motion field by constant velocity within small region of image plane

Feature matching techniques

- estimate disparity of special points (easily tracked features) between frames
- sparse

Think of stereo matching: same as estimating motion if we have two close views or two frames close in time.

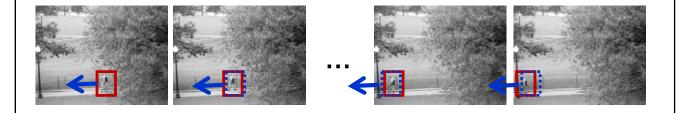
- Tracking with features: where should the search window be placed?
 - Near match at previous frame
 - More generally, according to expected dynamics of the object

Detection vs. tracking

Detection vs. tracking

Detection: We detect the object independently in each frame and can record its position over time, e.g., based on blob's centroid or detection window coordinates

Detection vs. tracking



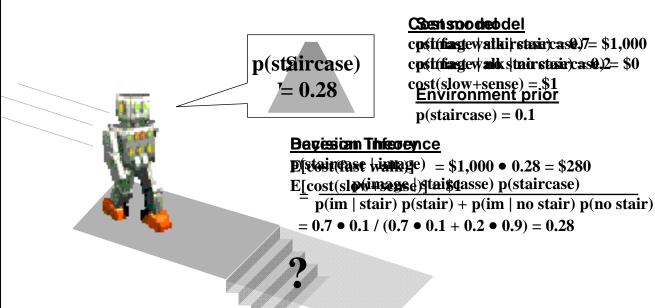
Tracking with *dynamics*: We use image measurements to estimate position of object, but also incorporate position predicted by dynamics, i.e., our expectation of object's motion pattern.

Goal of tracking

- Have a model of expected motion
- Given that, predict where objects will occur in next frame, even before seeing the image
- Intent:
 - do less work looking for the object, restrict search
 - improved estimates since measurement noise tempered by trajectory smoothness

General assumptions

- Expect motion to be continuous, so we can predict based on previous trajectories
 - Camera is not moving instantly from viewpoint to viewpoint
 - Objects do not disappear and reappear in different places in the scene
 - Gradual change in pose between camera and scene
- Able to model the motion

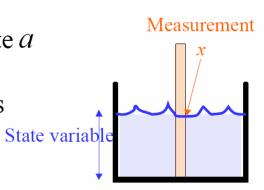


Slide by Sebastian Thrun and Jana Košecká, Stanford University

Tracking as inference: Bayes Filters

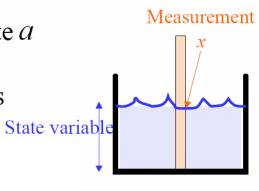
- \blacksquare Hidden state \mathbf{x}_t
 - The unknown true parameters
 - E.g., actual position of the person we are tracking
- Measurement y_t
 - Our noisy observation of the state
 - E.g., detected blob's centroid
- Can we calculate $p(x_t | y_1, y_2, ..., y_t)$?
 - Want to recover the state from the observed measurements

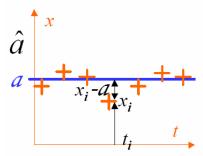
• Goal: Find estimate \hat{a} of state a such that the least square error between measurements and the state is minimum State



Note temporary change of notation: state is \mathbf{a} , and measurement at time step i is \mathbf{x}_i .

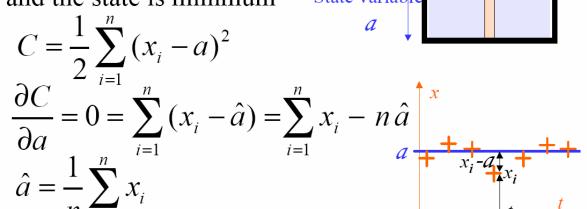
• Goal: Find estimate \hat{a} of state a such that the least square error between measurements and the state is minimum State





Measurement

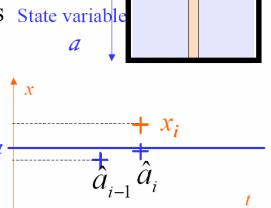
• Goal: Find estimate \hat{a} of state a such that the least square error between measurements and the state is minimum State variable



• We don't want to wait until all data have been collected to get an estimate \hat{a} of the depth

• We don't want to reprocess State variable old data when we make a new measurement

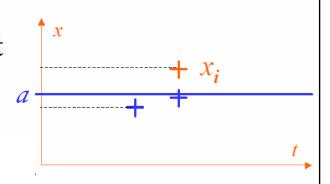
 Recursive method: data at step *i* are obtained from data at step *i*-1



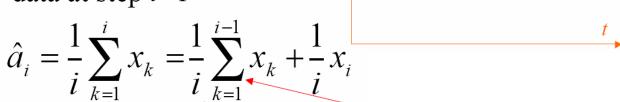
Measurement

• Recursive method: data at step *i* are obtained from data at step *i*-1

$$\hat{a}_i = \frac{1}{i} \sum_{k=1}^i x_k$$



• Recursive method: data at step *i* are obtained from data at step *i*-1

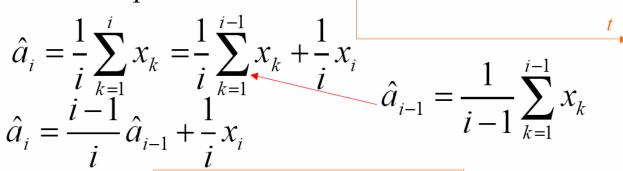


• Recursive method: data at step *i* are obtained from data at step *i*-1

$$\hat{a}_{i} = \frac{1}{i} \sum_{k=1}^{i} x_{k} = \frac{1}{i} \sum_{k=1}^{i-1} x_{k} + \frac{1}{i} x_{i}$$

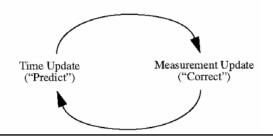
$$\hat{a}_{i-1} = \frac{1}{i-1} \sum_{k=1}^{i-1} x_{k}$$

• Recursive method: data at step *i* are obtained from data at step *i*-1



Inference for tracking

- Recursive process:
 - Assume we have initial prior that predicts state in absence of any evidence: $P(\mathbf{X}_0)$
 - At the first frame, correct this given the value of Y₀=y₀
 - Given corrected estimate for frame t
 - Predict for frame t+1
 - Correct for frame t+1



Tracking as inference

- Prediction:
 - Given the measurements we have seen up to this point, what state should we predict?

$$P(X_i|Y_0 = y_0, ..., Y_{i-1} = y_{i-1}).$$

- Correction:
 - Now given the current measurement, what state should we predict?

$$P(\boldsymbol{X}_i|\boldsymbol{Y}_0=\boldsymbol{y}_0,\ldots,\boldsymbol{Y}_i=\boldsymbol{y}_i)$$

Assume independences to simplify

 Only immediate past state influences current state

$$P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$$

 Measurements at time t only depend on the current state

$$P(\boldsymbol{Y}_i, \boldsymbol{Y}_j, \dots \boldsymbol{Y}_k | \boldsymbol{X}_i) = P(\boldsymbol{Y}_i | \boldsymbol{X}_i) P(\boldsymbol{Y}_j, \dots, \boldsymbol{Y}_k | \boldsymbol{X}_i)$$

Base case

$$P(\mathbf{X}_0|\mathbf{Y}_0 = \mathbf{y}_0) = \frac{P(\mathbf{y}_0|\mathbf{X}_0)P(\mathbf{X}_0)}{P(\mathbf{y}_0)}$$

$$\propto P(\boldsymbol{y}_0|\boldsymbol{X}_0)P(\boldsymbol{X}_0)$$

Induction step: prediction

Prediction

Prediction involves representing

$$P(\boldsymbol{X}_i|\boldsymbol{y}_0,\ldots,\boldsymbol{y}_{i-1})$$

given

$$P(\boldsymbol{X}_{i-1}|\boldsymbol{y}_0,\ldots,\boldsymbol{y}_{i-1}).$$

Our independence assumptions make it possible to write

$$P(X_{i}|y_{0},...,y_{i-1}) = \int P(X_{i},X_{i-1}|y_{0},...,y_{i-1})dX_{i-1}$$

$$= \int P(X_{i}|X_{i-1},y_{0},...,y_{i-1})P(X_{i-1}|y_{0},...,y_{i-1})dX_{i-1}$$

$$= \int P(X_{i}|X_{i-1})P(X_{i-1}|y_{0},...,y_{i-1})dX_{i-1}$$

Induction step: correction

Correction

Correction involves obtaining a representation of

$$P(\boldsymbol{X}_i|\boldsymbol{y}_0,\ldots,\boldsymbol{y}_i)$$

given

$$P(\boldsymbol{X}_i|\boldsymbol{y}_0,\ldots,\boldsymbol{y}_{i-1})$$

Our independence assumptions make it possible to write

$$P(\boldsymbol{X}_{i}|\boldsymbol{y}_{0},...,\boldsymbol{y}_{i}) = \frac{P(\boldsymbol{X}_{i},\boldsymbol{y}_{0},...,\boldsymbol{y}_{i})}{P(\boldsymbol{y}_{0},...,\boldsymbol{y}_{i})}$$

$$= \frac{P(\boldsymbol{y}_{i}|\boldsymbol{X}_{i},\boldsymbol{y}_{0},...,\boldsymbol{y}_{i-1})P(\boldsymbol{X}_{i}|\boldsymbol{y}_{0},...,\boldsymbol{y}_{i-1})P(\boldsymbol{y}_{0},...,\boldsymbol{y}_{i-1})}{P(\boldsymbol{y}_{0},...,\boldsymbol{y}_{i})}$$

$$= P(\boldsymbol{y}_{i}|\boldsymbol{X}_{i})P(\boldsymbol{X}_{i}|\boldsymbol{y}_{0},...,\boldsymbol{y}_{i-1})\frac{P(\boldsymbol{y}_{0},...,\boldsymbol{y}_{i-1})}{P(\boldsymbol{y}_{0},...,\boldsymbol{y}_{i})}$$

$$= \frac{P(\boldsymbol{y}_{i}|\boldsymbol{X}_{i})P(\boldsymbol{X}_{i}|\boldsymbol{y}_{0},...,\boldsymbol{y}_{i-1})}{\int P(\boldsymbol{y}_{i}|\boldsymbol{X}_{i})P(\boldsymbol{X}_{i}|\boldsymbol{y}_{0},...,\boldsymbol{y}_{i-1})d\boldsymbol{X}_{i}}$$

Inference for tracking

- Goal is then to
 - choose good model for the prediction and correction distributions
 - use the updates to compute best estimate of state
 - Prior to seeing measurement
 - After seeing the measurement

