Lecture 20: Tracking

Tuesday, Nov 27




Paper reviews

e Thorough summary in your own words
e Main contribution

o Strengths? Weaknesses?

 How convincing are the experiments?
e Suggestions to improve them?

« Extensions?

e 4 pages max

May require reading additional references

(This is list from 8/30/07 lecture)




What to submit for the extension

Include:

e Goal of the extension

 Summarize implementation strategy
« Analyze outcomes

« Show figures as necessary

For both, submit as hardcopy, due by the
end of the day on 12/6/07.




Outline

e Last time: Motion
— Motion field and parallax
— Optical flow, brightness constancy
— Aperture problem
e Today: Warping and tracking
— Image warping for iterative flow
— Feature tracking (vs. differential)
— Linear models of dynamics
— Kalman filters




Last time: Optical flow problem
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How to estimate pixel motion from image H to image 1?

» Solve pixel correspondence problem
— given a pixel in H, look for nearby pixels of the same color in |

Adapted from Steve Seitz, UW




Last time: Motion constraints

* To recover optical flow, we need some
constraints (assumptions)

— Brightness constancy: in spite of motion, image
measurement in small region will remain the same

— Spatial coherence: assume nearby points belong to
the same surface, thus have similar motions, so
estimated motion should vary smoothly.

— Temporal smoothness: motion of a surface patch
changes gradually over time.




Last time: Brightness constancy equation
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spatial gradients: how
image varies in x or y
direction for fixed time

temporal gradient: how
image varies in time for
fixed position

temporal derivatives,
u and v: rate of
changein x and y




Last time: Aperture problem

Vitu+ 1, =0

» Brightness constancy equation: single equation,
two unknowns; infinitely many solutions.

« Can only compute projection of actual flow
vector [u,v] in the direction of the image gradient,
that is, in the direction normal to the image edge.

— Flow component in gradient direction determined
— Flow component parallel to edge unknown.




Last time: Solving the aperture problem

How to get more equations for a pixel?

» Basic idea: impose additional constraints
— most common is to assume that the flow field is smooth locally

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!
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Adapted from Steve Seitz, UW




Last time: Lucas-Kanade flow

Prob: we have more equations than unknowns

A d=b ——— minimize ||Ad —b|?
25x2 2x1 25x1

Solution: solve least squares problem
¢ minimum least squares solution given by solution (in d) of:
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« The summations are over all pixels in the K x K window
» This technique was first proposed by Lucas & Kanade (1981)

Slide by Steve Seitz, UW




Difficulties

* When will this flow computation fail?
— If brightness constancy is not satisfied
* E.g., occlusions, illumination change...
— If the motion is not small
 derivative estimates poor

— If points within window neighborhood do not
move together
* E.g., if window size is too large




Image warping

Given a coordinate transform and a source image
f(x,y), how do we compute a transformed

image g(x,y’) = f(T(x,y))?

Slide from Alyosha Efros, CMU




Inverse warping

Get each pixel g(x',y’) from its corresponding location
(x,y) = TX(x',y’) in the first image

Q: what if pixel comes from “between” two pixels?

Slide from Alyosha Efros, CMU




Inverse warping

T vy !

X f(xy) ogxy)

Get each pixel g(x',y’) from its corresponding location
(x,y) = TX(x',y’) in the first image

Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
— nearest neighbor, bilinear...

Slide from Alyosha Efros, CMU




Bilinear interpolation
Sampling at f(x,y):

(4,5 + 1) (G+1,57+1)
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+(1 —a)  fli,j+ 1]

Slide from Alyosha Efros, CMU




lterative flow computation
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To iteratively refine flow estimates, repeat until warped
version of first image very close to second image:

« compute flow vector [u, V]

» warp image toward the other using estimated flow field

Figure from Martial Hebert, CMU




Feature Detection
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Tracking features

Feature tracking
» Compute optical flow for that feature for each consecutive frame pair

When will this go wrong?
* Occlusions—feature may disappear
— need mechanism for deleting, adding new features

 Changes in shape, orientation
— allow the feature to deform

* Changes in color
e Large motions

Adapted from Steve Seitz, UW




Handling large motions

Derivative-based flow computation requires small motion.
 If the motion is much more than a pixel, use discrete search instead

QW ) ‘ .
H(x,y) I(z,y)

* Given feature window W in H, find best matching window in |
¢ Minimize sum squared difference (SSD) of pixels in window

min(u’v) Z |I($ +u,y +v) — H(z, y)|2
(z,y)EW

» Solve by doing a search over a specified range of (u,v) values

— this (u,v) range defines the search window
Adapted from Steve Seitz, UW




» For a discrete matching search, what are the
tradeoffs of the chosen search window size?




Summary: Motion field estimation

« Differential techniques

— optical flow: use spatial and temporal variation
of image brightness at all pixels

— assumes we can approximate motion field by
constant velocity within small region of image
plane

 Feature matching techniques

— estimate disparity of special points (easily
tracked features) between frames

— sparse

Think of stereo matching: same as estimating motion if we
have two close views or two frames close in time.




e Tracking with features: where should the
search window be placed?
— Near match at previous frame

— More generally, according to expected
dynamics of the object




Detection vs. tracking




Detection vs. tracking

Detection: We detect the object independently in
each frame and can record its position over time,
e.g., based on blob’s centroid or detection

window coordinates




Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
l.e., our expectation of object’s motion pattern.




Goal of tracking

 Have a model of expected motion

e Given that, predict where objects will occur In
next frame, even before seeing the image

e |ntent:

— do less work looking for the object, restrict
search

— improved estimates since measurement noise
tempered by trajectory smoothness




General assumptions

« Expect motion to be continuous, so we can
predict based on previous trajectories

— Camera is not moving instantly from viewpoint
to viewpoint

— Objects do not disappear and reappear in
different places in the scene

— Gradual change in pose between camera and
scene

 Able to model the motion




Example of Bayesian Inference

Coatsnodebdel
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Bagesiamn Tihkewence

P(viedtFase yanyle) = $1,000 o 0.28 = $280
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=0.700.1/(0.700.1+0.20.9)=0.28

Slide by Sebastian Thrun and Jana KoSecka, Stanford University




Tracking as inference: Bayes Filters

= Hidden state x;
— The unknown true parameters
— E.g., actual position of the person we are tracking

= Measurement Yi
— Our noisy observation of the state
— E.g., detected blob’s centroid

= Can we calculate p(X; | Y1, Yo, ---» Vi) ?

— Want to recover the state from the observed
measurements




|dea of recursive estimation

Measurement

« Goal: Find estimate a of state a N
such that the least square
error between measurements

X

and the state 1s minimum  State variaﬂl

Note temporary change of notation: state
Is a, and measurement at time step i is X;.

Adapted from Cornelia Fermuller, UMD.




|dea of recursive estimation
Co A Measurement
* Goal: Find estimate a of state a sHemen
such that the least square
error between measurements
and the state 1s minimum  State variaﬂl
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Adapted from Cornelia Fermuller, UMD.




|dea of recursive estimation

o . A Measurement
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and the state 1s minimum  State variabl
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Adapted from Cornelia Fermuller, UMD.




|dea of recursive estimation

« We don’t want to wait until
all data have been collected
to get an estimate ¢ of the
depth

 We don’t want to reprocess
old data when we make a
new measurement

» Recursive method: data at
step 7 are obtained from 4«
data at step i-1

Adapted from Cornelia Fermuller, UMD.

Measurement

X

State variabl
17




|dea of recursive estimation
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Adapted from Cornelia Fermuller, UMD.




|dea of recursive estimation

. Recursive method: data at _‘
step i are obtained from T
: ad T =+
data at step /-1 +
1 i 1 i—1 1
az‘:__-zxk =< 2.5 T3
k= = l

Adapted from Cornelia Fermuller, UMD.




|dea of recursive estimation
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Adapted from Cornelia Fermuller, UMD.




|dea of recursive estimation

e Recursive method: data at : _‘
step 7 are obtained from | + X
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Adapted from Cornelia Fermuller, UMD.




Inference for tracking

* Recursive process:

— Assume we have initial prior that predicts
state in absence of any evidence: P(X)

— At the first frame, correct this given the value
of Yo=Y,

— Given corrected estimate for frame t
* Predict for frame t+1
» Correct for frame t+1 /_\\

t Measurement Update
ct™) (“Correct™)




Tracking as inference

* Prediction:

— Given the measurements we have seen up to
this point, what state should we predict?

P(Xi|Yo=1yp, ., Yio1=y, )

e Correction:

— Now given the current measurement, what
state should we predict?

P(XiYo=1yYg,---,Yi=1y;)




Assume independences to simplify

* Only immediate past state influences
current state

P(X:|X1,...,X;_1) = P(X:| Xi_1)

 Measurements at time t only depend on
the current state

P(Y.Y,,...YiX:) = P(Y;|X)P(Y;,...,YX;)




Base case

P(Xo[Yo =1yo) =

P(yy| Xo)P (X))

P(y,)

x P(yy|Xo)P(Xo)




Induction step: prediction

Prediction

Prediction involves representing

given




Induction step: correction

Correction

Correction involves obtaining a representation of

given
P(Xilyo,--- ¥i-1)

Our independence assumptions make it possible to write

Y 1)

1 XI y “““ yz -
( | 0 ) f’(y(,. y;)
_ P(y:| X, 90s - Y1) P(X|yo, ¥io1)P(yo
P(yo,---,y;)
Pyg,- - Yi1)

= P(y,;| X)) P(Xilyg,-- - ¥iy) :
' 0 ' ‘P(y()‘ yt)
P(yr"Xi)P(X-i|yu ----- Yi—1)

[Py X)) P(Xilyg, - - - Yy, 1)dX,;




Inference for tracking

e Goalisthento

— choose good model for the prediction and
correction distributions

— use the updates to compute best estimate of
state

 Prior to seeing measurement
» After seeing the measurement




« We stopped here on Tuesday, to be
continued on Thursday.




