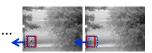


Lecture 21: Motion and tracking

Thursday, Nov 29 Prof. Kristen Grauman

Detection vs. tracking



Tracking with dynamics: We use image measurements to estimate position of object, but also incorporate position predicted by dynamics, i.e., our expectation of object's motion pattern.

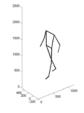
Tracking with dynamics

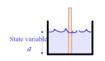
- · Have a model of expected motion
- · Given that, predict where objects will occur in next frame, even before seeing the image
- - do less work looking for the object, restrict
 - improved estimates since measurement noise tempered by trajectory smoothness

Tracking as inference: Bayes Filters

- Hidden state x,
 - The unknown true parameters
 - E.g., actual position of the person we are tracking
- Measurement y_t
 - Our noisy observation of the state
 - E.g., detected blob's centroid
- Can we calculate $p(x_t | y_1, y_2, ..., y_t)$?
 - Want to recover the state from the observed measurements

States and observations

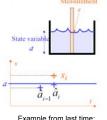




Hidden state is the list of parameters of interest Measurement is what we get to directly observe (in the images)

Recursive estimation

- · Unlike a batch fitting process, decompose estimation problem into
 - Part that depends on new observation
 - Part that can be computed from previous history
- For tracking, essential given typical goal of real-time processing.



running average

Tracking as inference

- · Recursive process:
 - Assume we have initial prior that *predicts* state in absence of any evidence: P(X₀)
 - At the first frame, *correct* this given the value of $\mathbf{Y}_0 = \mathbf{y}_0$
 - Given corrected estimate for frame t
 - Predict for frame t+1
 - Correct for frame t+1

Tracking as inference

- · Prediction:
 - Given the measurements we have seen up to this point, what state should we predict?

$$P(X_i|Y_0 = y_0, ..., Y_{i-1} = y_{i-1}).$$

- · Correction:
 - Now given the current measurement, what state should we predict?

$$P(\boldsymbol{X}_i|\boldsymbol{Y}_0=\boldsymbol{y}_0,\ldots,\boldsymbol{Y}_i=\boldsymbol{y}_i)$$

Independence assumptions

 Only immediate past state influences current state

$$P(\boldsymbol{X}_i|\boldsymbol{X}_1,\ldots,\boldsymbol{X}_{i-1}) = P(\boldsymbol{X}_i|\boldsymbol{X}_{i-1})$$

 Measurements at time t only depend on the current state

$$P(\boldsymbol{Y}_i, \boldsymbol{Y}_j, \dots \boldsymbol{Y}_k | \boldsymbol{X}_i) = P(\boldsymbol{Y}_i | \boldsymbol{X}_i) P(\boldsymbol{Y}_j, \dots, \boldsymbol{Y}_k | \boldsymbol{X}_i)$$

Tracking as inference

- · Goal is then to
 - choose good model for the prediction and correction distributions
 - use the updates to compute best estimate of state
 - · Prior to seeing measurement
 - · After seeing the measurement

Gaussian distributions, notation

$$\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$$

- random variable with Gaussian probability distribution that has the mean vector μ and covariance matrix Σ.
- \mathbf{x} and $\mathbf{\mu}$ are d-dimensional, $\mathbf{\Sigma}$ is $d \times d$.

Linear dynamic model

- Describe the a priori knowledge about
 - System dynamics model: represents evolution of state over time, with noise

$$\mathbf{x}_{t} \sim N(\mathbf{D}\mathbf{x}_{t-1}; \mathbf{\Sigma}_{d})$$

 Measurement model: at every time step we get a noisy measurement of the state

$$\mathbf{y}_{t} \sim N(\mathbf{M}\mathbf{x}_{t}; \mathbf{\Sigma}_{m})$$

$$\mathbf{y}_{t} \sim N(\mathbf{M}\mathbf{x}_{t}; \mathbf{\Sigma}_{m})$$

Example: randomly drifting points

$$\mathbf{x}_{t} \sim N(\mathbf{D}\mathbf{x}_{t-1}; \mathbf{\Sigma}_{d})$$
$$\mathbf{y}_{t} \sim N(\mathbf{M}\mathbf{x}_{t}; \mathbf{\Sigma}_{m})$$

- · Consider a stationary object, with state as position
- State evolution is described by identity matrix **D=I**
- · Position is constant, only motion due to random noise term.

Example: constant velocity

$$\mathbf{x}_{t} \sim N(\mathbf{D}\mathbf{x}_{t-1}; \boldsymbol{\Sigma}_{d})$$
$$\mathbf{y}_{t} \sim N(\mathbf{M}\mathbf{x}_{t}; \boldsymbol{\Sigma}_{m})$$

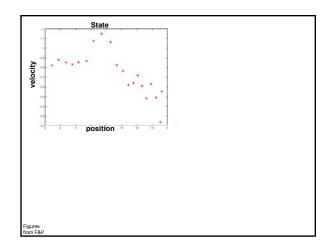
- State vector **x** is 1d position and velocity.
- Measurement y is position only.

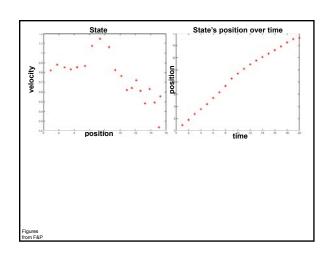
$$\begin{aligned} p_t &= p_{t-1} + (\Delta t) v_{t-1} + \xi \\ v_t &= v_{t-1} + \zeta \end{aligned} \right\} \ \mathbf{x}_t = \begin{bmatrix} p \\ v \end{bmatrix}_t = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ v \end{bmatrix}_{t-1} + noise \\ \mathbf{y}_t &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p \\ v \end{bmatrix}_t + \xi = p_t + \xi \end{aligned}$$

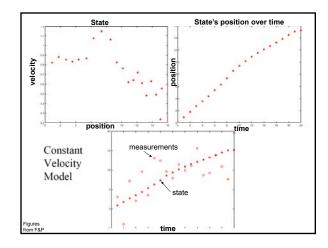
$$\mathbf{x} = \begin{bmatrix} p \\ v \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} p \\ v \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$







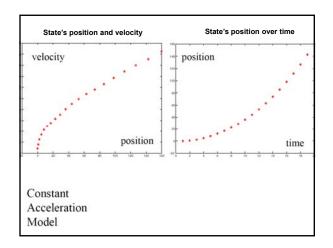
Example: constant acceleration

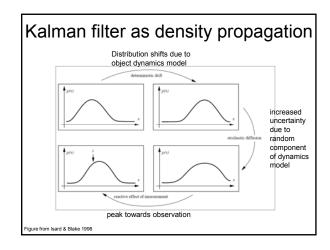
$$\mathbf{x}_{t} \sim N(\mathbf{D}\mathbf{x}_{t-1}; \boldsymbol{\Sigma}_{d})$$
$$\mathbf{y}_{t} \sim N(\mathbf{M}\mathbf{x}_{t}; \boldsymbol{\Sigma}_{m})$$

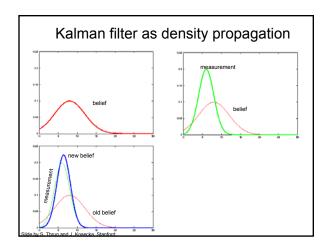
- · State is 1d position, velocity, and acceleration
- · Measurement is position only.

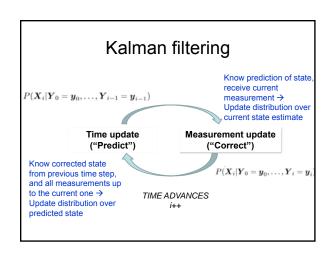
$$\begin{aligned} p_t &= p_{t-1} + (\Delta t) v_{t-1} + \xi \\ v_t &= v_{t-1} + (\Delta t) a_{t-1} + \zeta \\ a_t &= a_{t-1} + \varepsilon \end{aligned} \right\} \quad \mathbf{x}_t = \begin{bmatrix} p \\ v \\ a \end{bmatrix}_t = \begin{bmatrix} 1 & \Delta t & 0 \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p \\ v \\ a \end{bmatrix}_{t-1} + noise \\ \mathbf{D} \quad \mathbf{x}_{t-1} \end{aligned}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$









Kalman filtering

- Linear models + Gaussian distributions work well (read, simplify computation)
- · Gaussians also represented compactly

prediction
$$P(m{X}_i|m{Y}_0=m{y}_0,\ldots,m{Y}_{i-1}=m{y}_{i-1}).$$
 correction $P(m{X}_i|m{Y}_0=m{y}_0,\ldots,m{Y}_i=m{y}_i)$

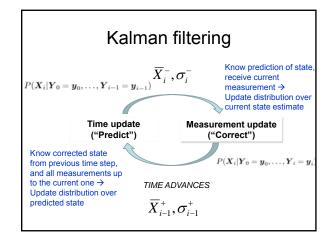
Kalman filter for 1d state

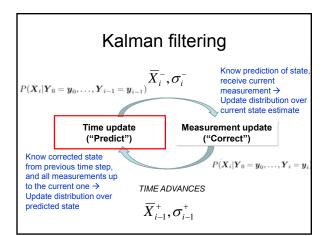
Dynamic $x_i \sim N(dx_{i-1}, \sigma_d^2)$ model $y_i \sim N(mx_i, \sigma_m^2)$

Want to $P(\boldsymbol{X}_i|\boldsymbol{Y}_0=\boldsymbol{y}_0,\dots,\boldsymbol{Y}_{i-1}=\boldsymbol{y}_{i-1}).$ represent and update $P(\boldsymbol{X}_i|\boldsymbol{Y}_0=\boldsymbol{y}_0,\dots,\boldsymbol{Y}_i=\boldsymbol{y}_i)$

Notation shorthand

mean of $P(X_i|y_0,\ldots,y_{i-1})$ as $\overline{X_i}$ Predicted mean mean of $P(X_i|y_0,...,y_i)$ as $\overline{X}_i^+ \leftarrow$ Corrected mean the standard deviation of $P(X_i|y_0,\ldots,y_{i-1})$ as $\sigma_i^$ of $P(X_i|y_0,\ldots,y_i)$ as σ_i^+





Kalman filter for 1d state: prediction

· Linear dynamic model defines expected state evolution, with noise:

$$x_i \sim N(dx_{i-1}, \sigma_d^2)$$

• Want to estimate distribution for next predicted state:

$$P(X_i|Y_0 = y_0,...,Y_{i-1} = y_{i-1}) = N(\overline{X}_i,(\sigma_i^-)^2)$$

- Update the mean:

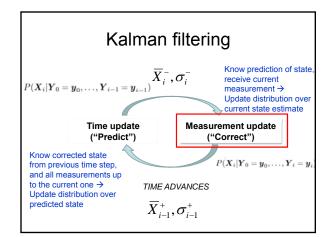
$$\overline{X}_{i}^{-} = d\overline{X}_{i-1}^{+}$$

Predicted mean depends on state transition value (constant d), and mean of previous state.

- Update the variance:

$$(\sigma_i^-)^2 = \sigma_d^2 + (d\sigma_{i-1}^+)^2$$

Variance depends on uncertainty at previous state, and noise of system's model of state evolution.



Kalman filter for 1d state: correction

· Linear model of dynamics reflects how state is mapped to measurements:

$$y_i \sim N(mx_i, \sigma_m^2)$$

Know predicted state distribution:

$$P(X_i|Y_0 = y_0,...,Y_{i-1} = y_{i-1}) = N(\overline{X}_i^-,(\sigma_i^-)^2)$$

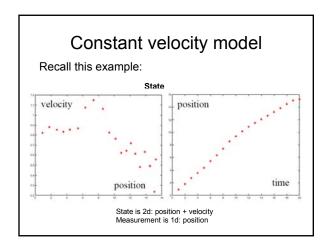
· Want to correct distribution over current state given new measurement y_i :

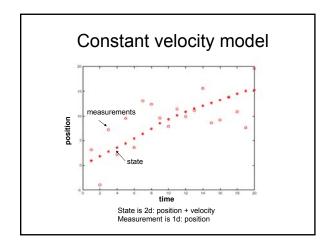
- Update mean

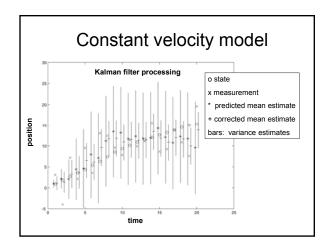
 $\overline{X}_{i}^{+} = \frac{\overline{X}_{i}^{-}\sigma_{m}^{2} + my_{i}(\sigma_{i}^{-})^{2}}{\sigma_{m}^{2} + m^{2}(\sigma_{i}^{-})^{2}} \quad \begin{array}{c} \text{Corrected state estimate} \\ \text{incorporates current mea} \\ \text{predicted state, meas. mo} \end{array}$ incorporates current measurement,

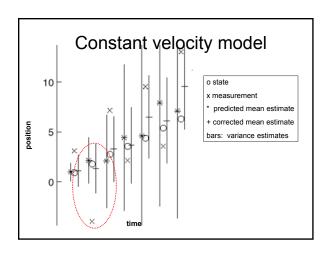
- Update variance $(\sigma_i^+)^2 = \frac{\sigma_m^2(\sigma_i^-)^2}{\sigma_m^2 + m^2(\sigma_i^-)^2}$

predicted state, meas. model, and their uncertainties. Small measurement noise→ relv on? Large measurement noise → rely on?









N-d Kalman filtering

- This generalizes to state vectors of any dimension
- Update rules in FP Alg 17.2

Data association

- We've assumed entire measurement (y) was cue of interest for the state
- But, there are typically uninformative measurements too-clutter.
- Data association: task of determining which measurements go with which tracks.

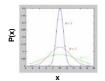
http://www.dkimages.com/discover/previews/1002/50215713.JPG

Data association (single object in clutter)

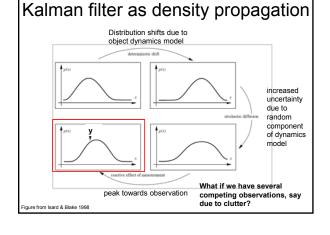
- · Global nearest neighbor
 - Choose to pay attention to the measurement with the highest probability given the predicted state
 - Can lead to tracking non-existent object
- · Probabilistic approach
 - Weight the measurements by probability given predicted state

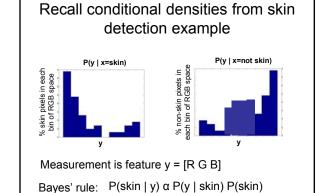
Kalman filter limitations

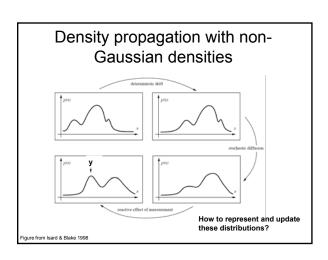
- · Gaussian densities, linear dynamic model:
 - + Simple updates, compact and efficient
 - But, unimodal distribution, only single hypothesis
 - Restricted class of motions defined by linear model



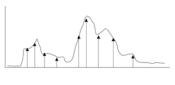
 $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$





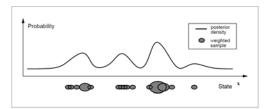


Non-parametric representations for non-Gaussian densities



Can represent distribution with set of weighted samples ("particles")

Factored sampling (single frame)



Represent the posterior $p(\mathbf{x}|\mathbf{y})$ non-parametrically:

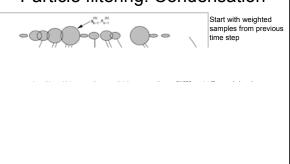
- Sample points randomly from prior density for the state, p(x).
- Weight the samples according to p(y|x).

Figure from Isard & Blake 1998

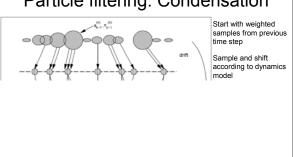
Particle filtering

- Extend idea of sampling to propagate densities over time (i.e., across frames in a video sequence).
- At each time step, represent posterior p(x_t|y_t) with weighted sample set
- Previous time step's sample set p(x_t|y_{t-1}) is passed to next time step as the effective prior
- (a.k.a. survival of the fittest, sequential Monte Carlo filtering, Condensation [Isard & Blake 96])

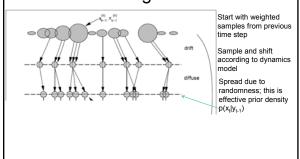
Particle filtering: Condensation



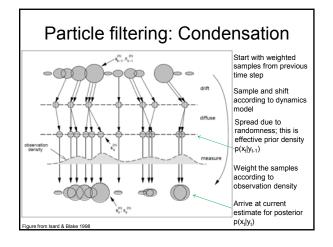
Particle filtering: Condensation

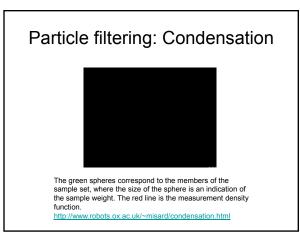


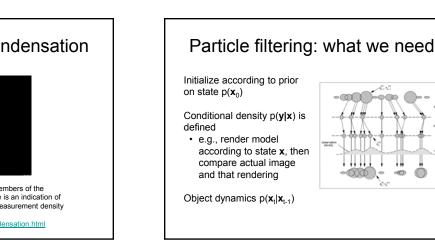
Particle filtering: Condensation

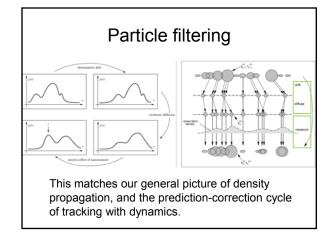


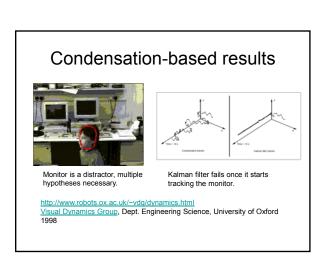
Particle filtering: Condensation Start with weighted samples from previous time step Sample and shift according to dynamics model Spread due to randomness; this is effective prior density p(x_i|y_{t-1}) Weight the samples according to observation density











Condensation-based results

Switching between multiple

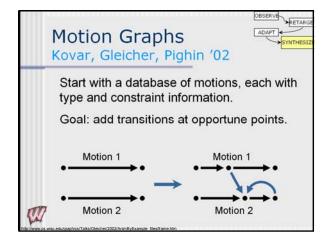
http://www.robots.ox.ac.uk/~vdg/dynamics.html

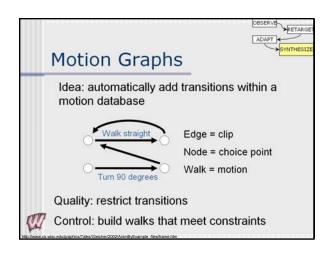
Visual Dynamics Group, Dept. Engineering Science, University of Oxford

Issues

- Initialization
 - Often done manually
- · Data association, multiple tracked objects
 - Occlusions
- Deformable and articulated objects
- Constructing accurate models of dynamics

Next, a brief look at an example-based technique for estimating pose and representing human motion dynamics...





Motion capture (Mocap) Collect pose data with active sensing – special markers, cameras.

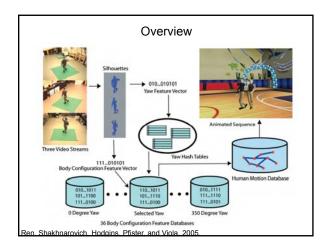
Motion graphs

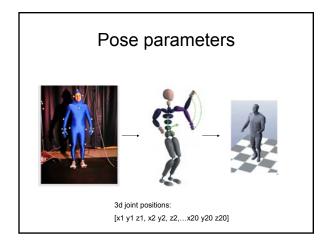
- · Graphics application:
 - Any walk on the graph is a valid motion
 - Can synthesize new animation:
 - · Select motion clips from the graph
 - Reassemble them to form new motion
 - Maintain realism of motions because clips retain subtle details of real motion.
- Vision application:
 - Non-parametric representation of human motion dynamics

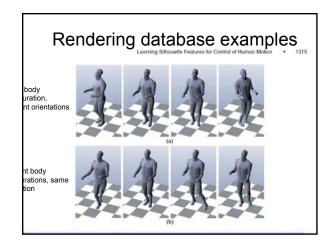
Example-based pose estimation and animation

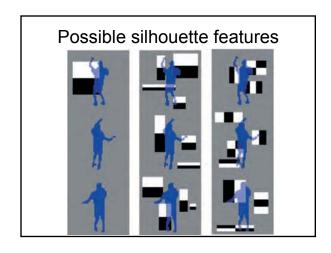
- Build a two-character motion graph from examples of people dancing with mocap
- Populate database with synthetically generated silhouettes in poses defined by mocap (behavior specific dynamics)
- Use discriminative silhouette features to identify similar examples in database
- Retrieve the pose stored for those similar examples to estimate user's pose
- · Animate user and hypothetical partner

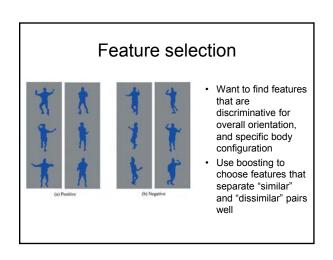
Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.

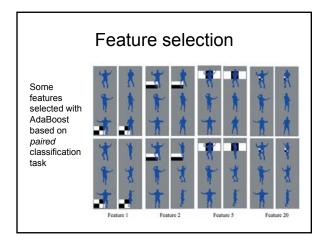






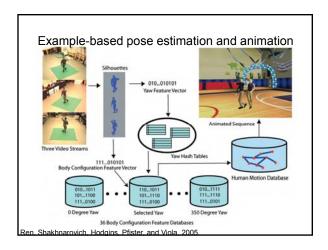


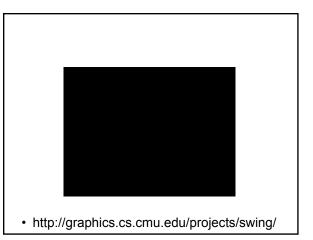




Two-character motion graph

- · Dancing partners' motions are highly correlated
- Extend motion graph to represent *partner*'s pose relative to user's





· Issues?

References

- Conditional density propagation for visual tracking (CONDENSATION), Isard and Blake, IJCV 1998.
- Lucas Kovar Michael Gleicher Frederic Pighin. Motion Graphs. ACM Transactions on Graphics 21(3) (Proceedings of SIGGRAPH 2002). July 2002.
- L. Ren, G. Shakhnarovich, J. Hodgins, H. Pfister, P. Viola, "Learning Silhouette Features for Control of Human Motion", ACM Transactions on Graphics, 2005.