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Lecture 21: Motion and 
trackingg

Thursday, Nov 29
Prof. Kristen Grauman

Detection vs. tracking

…

Tracking with dynamics: We use image 
measurements to estimate position of object, but 
also incorporate position predicted by dynamics, 
i.e., our expectation of object’s motion pattern.

Tracking with dynamics

• Have a model of expected motion
• Given that, predict where objects will occur in 

next frame, even before seeing the image
• Intent:Intent: 

– do less work looking for the object, restrict 
search

– improved estimates since measurement noise 
tempered by trajectory smoothness

Tracking as inference: Bayes Filters
Hidden state xt
– The unknown true parameters
– E.g., actual position of the person we are tracking

Measurement yt
– Our noisy observation of the state
– E.g., detected blob’s centroid

Can we calculate p(xt | y1, y2, …, yt) ?
– Want to recover the state from the observed 

measurements

States and observations

Hidden state is the list of parameters of interest
Measurement is what we get to directly observe (in 

the images)

Recursive estimation

• Unlike a batch fitting process, 
decompose estimation 
problem into
– Part that depends on new p

observation
– Part that can be computed 

from previous history
• For tracking, essential given 

typical goal of real-time 
processing.

Example from last time: 
running average
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Tracking as inference

• Recursive process:
– Assume we have initial prior that predicts

state in absence of any evidence: P(X0)
– At the first frame correct this given the valueAt the first frame, correct this given the value 

of Y0=y0

– Given corrected estimate for frame t
• Predict for frame t+1
• Correct for frame t+1

Tracking as inference

• Prediction:
– Given the measurements we have seen up to 

this point, what state should we predict?

• Correction:
– Now given the current measurement, what 

state should we predict?

Independence assumptions

• Only immediate past state influences 
current state

• Measurements at time t only depend on 
the current state

Tracking as inference

• Goal is then to 
– choose good model for the prediction and 

correction distributions
– use the updates to compute best estimate ofuse the updates to compute best estimate of 

state
• Prior to seeing measurement
• After seeing the measurement

Gaussian distributions, notation

• random variable with Gaussian probability 
distribution that has the mean vector μ and 
covariance matrix Σ.

),(~ Σμx N

• x and μ are d-dimensional, Σ is d x d.

d=2 d=1

Linear dynamic model
• Describe the a priori knowledge about 

– System dynamics model: represents evolution 
of state over time, with noise

);(~ 1 dtt N ΣDxx −

– Measurement model: at every time step we 
get a noisy measurement of the state

);(~ mtt N ΣMxy

n x n n x 1n x 1

m x n n x 1m x 1
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Example: randomly 
drifting points

• Consider a stationary object, with state as position
• State evolution is described by identity matrix D=I
• Position is constant, only motion due to random 

noise term

);(~ 1 dtt N ΣDxx −

);(~ mtt N ΣMxy

noise term.

• State vector x is 1d position and velocity.
• Measurement y is position only.

Example: constant 
velocity

);(~ 1 dtt N ΣDxx −

);(~ mtt N ΣMxy
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• State is 1d position, velocity, and acceleration
• Measurement is position only.

Example: constant 
acceleration
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State’s position and velocity State’s position over time Kalman filter as density propagation
Distribution shifts due to 
object dynamics model

increased 
uncertainty 

Figure from Isard & Blake 1998

y
due to 
random 
component 
of dynamics 
model

peak towards observation

Kalman filter as density propagation

measurement

belief
belief

old belief

new belief

Slide by S. Thrun and J. Kosecka, Stanford

Kalman filtering
Know prediction of state, 
receive current 
measurement 
Update distribution over 
current state estimate

Know corrected state 
from previous time step, 
and all measurements up 
to the current one 
Update distribution over 
predicted state

TIME ADVANCES
i++

Time update
(“Predict”)

Measurement update
(“Correct”)

Kalman filtering

• Linear models + Gaussian distributions 
work well (read, simplify computation)

• Gaussians also represented compactly

prediction

correction

Kalman filter for 1d state

Dynamic 
model

),(~ 2
1 dii dxNx σ−

),(~ 2
mii mxNy σ

Want to 
represent 
and update



11/30/2007

5

Notation shorthand Kalman filtering
Know prediction of state, 
receive current 
measurement 
Update distribution over 
current state estimate

−−
iiX σ,

Know corrected state 
from previous time step, 
and all measurements up 
to the current one 
Update distribution over 
predicted state

TIME ADVANCES

Time update
(“Predict”)

Measurement update
(“Correct”)

+
−

+
− 11, iiX σ

Kalman filtering
Know prediction of state, 
receive current 
measurement 
Update distribution over 
current state estimate

−−
iiX σ,

Know corrected state 
from previous time step, 
and all measurements up 
to the current one 
Update distribution over 
predicted state

TIME ADVANCES

Time update
(“Predict”)

Measurement update
(“Correct”)

+
−

+
− 11, iiX σ

Kalman filter for 1d state: prediction
• Linear dynamic model defines expected state 

evolution, with noise:

• Want to estimate distribution for next predicted state:

),(~ 2
1 dii dxNx σ−

))(( 2−−XN

– Update the mean:

– Update the variance:

+
−

− = 1ii XdX

))(,( 2= iiXN σ

2
1

22 )()( +
−

− += idi dσσσ

Predicted mean depends on state 
transition value (constant d), and 
mean of previous state.

Variance depends on uncertainty 
at previous state, and noise of 
system’s model of state evolution.

Kalman filtering
Know prediction of state, 
receive current 
measurement 
Update distribution over 
current state estimate

−−
iiX σ,

Know corrected state 
from previous time step, 
and all measurements up 
to the current one 
Update distribution over 
predicted state

TIME ADVANCES

Time update
(“Predict”)

Measurement update
(“Correct”)

+
−

+
− 11, iiX σ

• Linear model of dynamics reflects how state is 
mapped to measurements:

• Know predicted state distribution:

Kalman filter for 1d state: correction

))(,( 2−−= iiXN σ

),(~ 2
mii mxNy σ

• Want to correct distribution over current state given 
new measurement      :
– Update mean

– Update variance

222

22

)(
)(

−

−−
+

+
+

=
im

iimi
i m

myXX
σσ
σσ

222

22
2

)(
)()( −

−
+

+
=

im

im
i m σσ

σσσ

Corrected state estimate 
incorporates current measurement, 
predicted state, meas. model, and 
their uncertainties.
Small measurement noise rely on?
Large measurement noise rely on?
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Constant velocity model

State

Recall this example:

State is 2d: position + velocity 
Measurement is 1d: position

Constant velocity model

measurements

on

State is 2d: position + velocity 
Measurement is 1d: position

state

time

po
si

tio
Kalman filter processing

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

Constant velocity model

on

time

bars:  variance estimates

po
si

tio

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

Constant velocity model
on

bars:  variance estimates

time

po
si

tio

N-d Kalman filtering

• This generalizes to state vectors of any 
dimension

• Update rules in FP Alg 17.2

Data association
• We’ve assumed entire 

measurement (y) was cue 
of interest for the state

• But, there are typically 
uninformativeuninformative 
measurements too–clutter.

• Data association:  task of 
determining which 
measurements go with 
which tracks.

http://www.dkimages.com/discover/previews/1002/50215713.JPG
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Data association (single object 
in clutter)

• Global nearest neighbor
– Choose to pay attention to the measurement 

with the highest probability given the 
predicted statep

– Can lead to tracking non-existent object
• Probabilistic approach

– Weight the measurements by probability 
given predicted state
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Kalman filter limitations

• Gaussian densities, linear dynamic model:
+ Simple updates, compact and efficient
– But, unimodal distribution, only single hypothesis
– Restricted class of motions defined by linear model

),(~ Σμx N

x

P(
x)

Kalman filter as density propagation
Distribution shifts due to 
object dynamics model

increased 
uncertainty 

Figure from Isard & Blake 1998

y
due to 
random 
component 
of dynamics 
model

peak towards observation
What if we have several 
competing observations, say 
due to clutter?

y

Recall conditional densities from skin 
detection example
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Bayes’ rule: P(skin | y) α P(y | skin) P(skin)

y y

Density propagation with non-
Gaussian densities

Figure from Isard & Blake 1998

How to represent and update 
these distributions?

y
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Non-parametric representations 
for non-Gaussian densities

Can represent 
di t ib ti ith tdistribution with set 
of weighted samples 
(“particles”)

Factored sampling (single frame)

Figure from Isard & Blake 1998

Represent the posterior p(x|y) non-parametrically:
• Sample points randomly from prior density   

for the state, p(x).
• Weight the samples according to p(y|x).

Particle filtering
• Extend idea of sampling to propagate densities 

over time (i.e., across frames in a video 
sequence).

• At each time step, represent posterior p(xt|yt) 
with weighted sample set

• Previous time step’s sample set p(xt|yt-1) is 
passed to next time step as the effective prior

• (a.k.a. survival of the fittest, sequential Monte 
Carlo filtering, Condensation [Isard & Blake 96])

Particle filtering: Condensation
Start with weighted 
samples from previous 
time step

Shift each sample 
according to dynamics 
model

S d d tSpread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samples 
according to 
observation density

Arrive at current 
estimate for posterior 
p(xt|yt) Figure from Isard & Blake 1998

Particle filtering: Condensation
Start with weighted 
samples from previous 
time step

Sample and shift 
according to dynamics 
model

S d d tSpread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samples 
according to 
observation density

Arrive at current 
estimate for posterior 
p(xt|yt) Figure from Isard & Blake 1998

Particle filtering: Condensation
Start with weighted 
samples from previous 
time step

Sample and shift 
according to dynamics 
model

S d d tSpread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samples 
according to 
observation density

Arrive at current 
estimate for posterior 
p(xt|yt) Figure from Isard & Blake 1998
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Particle filtering: Condensation
Start with weighted 
samples from previous 
time step

Sample and shift 
according to dynamics 
model

S d d tSpread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samples 
according to 
observation density

Arrive at current 
estimate for posterior 
p(xt|yt) Figure from Isard & Blake 1998

Particle filtering: Condensation
Start with weighted 
samples from previous 
time step

Sample and shift 
according to dynamics 
model

S d d tSpread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samples 
according to 
observation density

Arrive at current 
estimate for posterior 
p(xt|yt) Figure from Isard & Blake 1998

Particle filtering: Condensation

The green spheres correspond to the members of the 
sample set, where the size of the sphere is an indication of 
the sample weight. The red line is the measurement density 
function.
http://www.robots.ox.ac.uk/~misard/condensation.html

Particle filtering: what we need

Initialize according to prior 
on state p(x0)

Conditional density p(y|x) is 
defineddefined

• e.g., render model 
according to state x, then 
compare actual image 
and that rendering

Object dynamics p(xt|xt-1)

Particle filtering

This matches our general picture of density 
propagation, and the prediction-correction cycle 
of tracking with dynamics.

Condensation-based results

http://www.robots.ox.ac.uk/~vdg/dynamics.html
Visual Dynamics Group, Dept. Engineering Science, University of Oxford
1998

Monitor is a distractor, multiple 
hypotheses necessary.

Kalman filter fails once it starts 
tracking the monitor.
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Condensation-based results

http://www.robots.ox.ac.uk/~vdg/dynamics.html
Visual Dynamics Group, Dept. Engineering Science, University of Oxford
1998

Switching between multiple 
motion models.

Issues

• Initialization
– Often done manually

• Data association, multiple tracked objects
– Occlusions– Occlusions

• Deformable and articulated objects
• Constructing accurate models of dynamics

Next, a brief look at an example-based 
technique for estimating pose and 
representing human motion dynamics…

http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm

Motion capture (Mocap)
Collect pose data with active sensing – special markers, 
cameras.

http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm

Motion graphs

• Graphics application:
– Any walk on the graph is a valid motion
– Can synthesize new animation:

• Select motion clips from the graph
• Reassemble them to form new motion

– Maintain realism of motions because clips 
retain subtle details of real motion.

• Vision application:
– Non-parametric representation of human 

motion dynamics
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Example-based pose estimation 
and animation

• Build a two-character motion graph from examples of 
people dancing with mocap

• Populate database with synthetically generated 
silhouettes in poses defined by mocap (behavior specific 
dynamics)dynamics)

• Use discriminative silhouette features to identify similar 
examples in database

• Retrieve the pose stored for those similar examples to 
estimate user’s pose

• Animate user and hypothetical partner

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.

Overview

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.

Pose parameters

3d joint positions:

[x1 y1 z1, x2 y2, z2,…x20 y20 z20]

body 
guration, 
ent orientations

Rendering database examples

nt body 
urations, same 
ation

Possible silhouette features Feature selection

• Want to find features 
that are 
discriminative for 
overall orientation, 

d ifi b dand specific body 
configuration

• Use boosting to 
choose features that 
separate “similar” 
and “dissimilar” pairs 
well



11/30/2007

12

Feature selection

Some 
features 
selected with 
AdaBoostAdaBoost 
based on 
paired 
classification 
task

Two-character motion graph

• Dancing partners’ motions are highly correlated
• Extend motion graph to represent partner’s pose 

relative to user’s

Example-based pose estimation and animation

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.
• http://graphics.cs.cmu.edu/projects/swing/

• Issues?
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