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Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
i.e., our expectation of object’s motion pattern.

Tracking with dynamics

» Have a model of expected motion

» Given that, predict where objects will occur in
next frame, even before seeing the image

* Intent:

—do less work looking for the object, restrict
search

— improved estimates since measurement noise
tempered by trajectory smoothness

Tracking as inference: Bayes Filters

= Hidden state x,
— The unknown true parameters
— E.g., actual position of the person we are tracking

= Measurement y,
— Our noisy observation of the state
— E.g., detected blob’s centroid

= Can we calculate p(X, | Y1, Yo -3 YO ?

— Want to recover the state from the observed
measurements

States and observations

Hidden state is the list of parameters of interest

Measurement is what we get to directly observe (in
the images)

Recursive estimation

Unlike a batch fitting process,
decompose estimation
problem into

— Part that depends on new
observation
— Part that can be computed :
from previous history a4,
For tracking, essential given
typical goal of real-time
processing.

Example from last time:
running average




Tracking as inference

* Recursive process:

— Assume we have initial prior that predicts
state in absence of any evidence: P(X,)

— At the first frame, correct this given the value
of Yo=Yy,

— Given corrected estimate for frame t
* Predict for frame t+1

* Correct for frame t+1 /_ \\

Time Update Measurensent Update
“Predict™) ("Correct”)

: .‘\__/“ uy

11/30/2007

Tracking as inference

* Prediction:

— Given the measurements we have seen up to
this point, what state should we predict?

P(X:|Yo=yg....Yi1 =y, 1)

 Correction:

— Now given the current measurement, what
state should we predict?

.|”(X,‘|Y:J y“‘.”‘Y,; y,-}

Independence assumptions

* Only immediate past state influences
current state

P(X;| X, ..., X, 1) =P(X;|X:y)

» Measurements at time t only depend on
the current state

P(Y.Y,, .. Yi|X,)=P(YX,)P(Y,

Tracking as inference

» Goal is then to
— choose good model for the prediction and
correction distributions
— use the updates to compute best estimate of
state
* Prior to seeing measurement
* After seeing the measurement

Gaussian distributions, notation

x~N(p,X)

» random variable with Gaussian probability
distribution that has the mean vector p and
covariance matrix Z.

* x and p are d-dimensional, £is d x d.

d=2 d=1

Linear dynamic model

* Describe the a priori knowledge about

— System dynamics model: represents evolution
of state over time, with noise

)?t ~N (/DX_\t—l; )

nx1 nxn nx1

— Measurement model: at every time step we
get a noisy measurement of the state

~N(Mx ;X
%’t (/.)f\t’ m)

mx1 mxn nx1
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Example: randomly X, ~ N(Dx,_;X,)
drifting points y, ~ N(Mx,;X,)

» Consider a stationary object, with state as position
» State evolution is described by identity matrix D=I

» Position is constant, only motion due to random
noise term.

Example: constant X~ N(Dx, 5 Z)
velocity Yo~ N(Mx; X,)

+ State vector x is 1d position and velocity.
* Measurementy is position only.

P =Py + AV, +& X, :[p} :[(1) Aﬂ[p} +noise
Ve =V + & . Yo
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x, ~ N(Dx;; Ey)
v~ N(Mx; X))

Example: constant
acceleration

+ State is 1d position, velocity, and acceleration

* Measurement is position only.
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State’s position over time

State’s position and velocity

position

velocity

lime

position
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Kalman filter as density propagation

Distribution shifts due to
object dynamics model

. - ]
: -
" .
/\ —/\ increased
’ N uncertainty
due to

random
N . component
" i of dynamics

Constant

peak towards observation

Acceleration
Model

Figure from Isard & Blake 1998

Kalman filter as density propagation

measurement

belief

: /L s
/ b
/ A\ .

new belief

’"easuremem

", old belief

Kalman filtering
Know prediction of state,|
receive current

i1) measurement >
Update distribution over

Kalman filtering

P(X:Yo=yg.... Y

prediction

correction _[?{X i |Y“ =Ygy

+ Linear models + Gaussian distributions
work well (read, simplify computation)
» Gaussians also represented compactly

PX| Yo =yo--s Yiai=y
current state estimate
Time update Measurement update
(“Predict”) (“Correct”)
Know corrected state
from previous time step, PXilYo =wyp.....Yi=y
and all measurements up
to the current one > TIME ADVANCES
Update distribution over i+
predicted state
Kalman filter for 1d state
2
) X ~ N(dx._,,0o
Dynamic i (105 )
model ~ 2
yi N (mxi 1 Gm )
Want to 1”(Xj|Y1] y””.”Y,; 1 Yiq)
represent
and update P(X;|Yo = yg,.... Y, =y,)




Notation shorthand

mean of P(X;|vo, ... pi-1) as T. <+ Predicted mean

mean of P(X; |y, ...y ) as X, + Corrected mean

the standard deviation of P(X;|yg, .. .. Yi—1) as a;
of P(Xilyo. .- ui) as o

Kalman filtering

R _ Know prediction of state,
X! e receive current

P(X|Yo=vwq, ..., Yia=w.) measurement >
Update distribution over
current state estimate

Time update Measurement update
(“Predict”) (“Correct”)

Know corrected state
from previous time step,
and all measurements up
to the current one >
Update distribution over

predicted state v + +
i-10ig

PX Yo =y, Yi=w

TIME ADVANCES
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Xi O receive current
P(XilYo=wn---, Yioi=wyia) measurement >
Update distribution over
current state estimate
Time update Measurement update
(“Predict”) (“Correct”)

Kalman filtering

i _ Know prediction of state,

Know corrected state
from previous time step,
and all measurements up
to the current one >
Update distribution over
predicted state v + +

i-10ia

P(XilYo=wvg ..., Yi=uw,

TIME ADVANCES

Kalman filter for 1d state: prediction

« Linear dynamic model defines expected state
evolution, with noise:
2
X ~ N(dx;_y, 04 )

« Want to estimate distribution for next predicted state:
P(XilYo=yg.-... Yii=y.)=N(X,(c7))

— Update the mean: -
Predicted mean depends on state

)?f = d)?Jr transition value (constant d), and
! i-1 mean of previous state.

— Update the variance:
Variance depends on uncertainty

-\2 _ 2 + 32 at i tate, and noise of
3 — +(do at previous state,
(Gl ) G4 ( O-"l) system’s model of state evolution.

Kalman filtering

Vs _ Know prediction of state,
X: , O receive current

P(XilYo=wa...., Yia=w.1) measurement >
Update distribution over
current state estimate

Time update Measurement update
(“Predict”) (“Correct”)

Know corrected state
from previous time step,
and all measurements up
to the current one >
Update distribution over

predicted state v + +
i-1:0i

P(XilYo=wo,....Yi=w,

TIME ADVANCES

Kalman filter for 1d state: correction

 Linear model of dynamics reflects how state is
mapped to measurements:
Yi ~ N(mxi,aé )
» Know predicted state distribution:
P(Xi|Yo=yo....Yi1 =y, 1) =N(X/,(67)?)

* Want to correct distribution over current state given
new measurement ¥, :
< Xiomrmylor)’

Corrected state estimate
5 S incorporates current measurement,
o, +m (O’, ) predicted state, meas. model, and
their uncertainties.
2, 2 Small measurement noise-> rely on?
On (O-i ) Large measurement noise> rely on?

ol +m’(o))?

— Update variance

(Of)z =




Constant velocity model

Recall this example:

State
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velocity { .| position

position  { T, * time

State is 2d: position + velocity
Measurement is 1d: position

Constant velocity model

.| measurements
N

position

T

state

time
State is 2d: position + velocity
Measurement is 1d: position

position

Constant velocity model

Kalman filter pr
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time

N-d Kalman filtering

* This generalizes to state vectors of any
dimension

» Update rules in FP Alg 17.2

Data association

* We've assumed entire
measurement (y) was cue
of interest for the state

« But, there are typically
uninformative
measurements too—clutter.

» Data association: task of
determining which
measurements go with
which tracks.
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Data association (single object
in clutter)

* Global nearest neighbor

— Choose to pay attention to the measurement
with the highest probability given the
predicted state

— Can lead to tracking non-existent object

* Probabilistic approach

— Weight the measurements by probability
given predicted state

* http://www.cs.bu.edu/~betke/research/bats/

Kalman filter limitations

» Gaussian densities, linear dynamic model:
+ Simple updates, compact and efficient
— But, unimodal distribution, only single hypothesis
— Restricted class of motions defined by linear model

P(x)

x~ N(p, X)

Kalman filter as density propagation

Distribution shifts due to
object dynamics model

—/_\ increased
. 3 uncertainty

due to

kst duffinicn random
component
of dynamics
model

: What if we have several
peak towards observation  competing observations, say

?
Figure from Isard & Blake 1998 due to clutter?

Recall conditional densities from skin
detection example

P(y | x=skin) © P(y | x=not skin)
S c
[ = @
88 s &
@ 2
£ & X
P aQ
° 4
29 <5
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2 g5
% S
R J =%
B R
(9]
y y

Measurement is feature y = [R G B]

Bayes’ rule: P(skin | y) a P(y | skin) P(skin)

Density propagation with non-
Gaussian densities

NN

How to represent and update
these distributions?

Figure from Isard & Blake 1998
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Non-parametric representations Factored sampling (single frame)
for non-Gaussian densities
t Probatility —— posterce 1
P Can represent J\/\/\N
L5 distribution with set .
‘ I . of weighted samples @o@ awo QP o  Sue
f a4 I (“particles”)
Represent the posteriorMOn-parametrically:
» Sample points randomly from prior density
for the state, p(x).
* Weight the samples according to p(y|x).
Particle filtering Particle filtering: Condensation
Extend idea of sampling to propagate densities S Somples oo
. X | | I — A "_ PR {.—"\—’ - ;amples from previous
over time (i.e., across frames in a video —’kﬂk}‘f\ﬁ) T [fmester
sequence).
» At each time step, represent posterior p(xy;)
with weighted sample set
+ Previous time step’s sample set p(xy..+) is
passed to next time step as the effective prior
» (a.k.a. survival of the fittest, sequential Monte
Carlo filtering, Condensation [Isard & Blake 96])

Particle filtering: Condensation Particle filtering: Condensation
Start with weighted Start with weighted
samples from previous samples from previous
time step time step

Sample and shift
| according to dynamics
| 'model

\ Sample and shift
| according to dynamics
| 'model

| | Spread due to
randomness; this is
effective prior density
Tp(Xiye)
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Particle filtering: Condensation

Start with weighted
samples from previous
time step

it Sample and shift

according to dynamics
| 'model

| | Spread due to
randomness; this is

S
T i F effective prior density
" { J ) [TPOelye)

. measure |

- /| Weight the samples
/' laccording to

* observation density

Particle filtering: Condensation

drift

Start with weighted
samples from previous
time step

Sample and shift
according to dynamics
| 'model

| | Spread due to
randomness; this is
effective prior density

Tp(xlyer)

' Weight the samples
according to

observation density

—_ Arrive at current

Particle filtering: Condensation

The green spheres correspond to the members of the
sample set, where the size of the sphere is an indication of
the sample weight. The red line is the measurement density
function.

http://www.robots.ox.ac.uk/~misard/condensation.html

| i estimate for posterior
Figure from Isard & Blake 1998 P(xly)
Particle filtering: what we need
Initialize according to prior
on state p(x,) T N oo
Conditional density p(y|x) is A G &
defined , A
- e.g., render model | o
according to state x, then R N I s
compare actual image [ moon /
- A"a ) ..'_\_\.

and that rendering

Object dynamics p(x|X.)

Particle filtering

f\/\L "J\‘/\\f o

FIAN L .

, T =N T

This matches our general picture of density
propagation, and the prediction-correction cycle
of tracking with dynamics.

m—

Monitor is a distractor, multiple
hypotheses necessary.

http://www.robots.ox.ac.uk/~vdg/dynamics.html|
Visual Dynamics Group, Dept. Engineering Science,
1998

Condensation-based results

Kalman filter fails once it starts
tracking the monitor.

University of Oxford




Condensation-based results

ra

Switching between multiple
motion models.

http://www.robots.ox.ac.uk/~vdg/dynamics.html

Visual Dynamics Group, Dept. Engineering Science, University of Oxford
1998
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Issues

* Initialization
— Often done manually
» Data association, multiple tracked objects
— Occlusions
Deformable and articulated objects
+ Constructing accurate models of dynamics

Next, a brief look at an example-based
technique for estimating pose and
representing human motion dynamics...

Motion Graphs

Kovar, Gleicher, Pighin ‘02

SYNTHESIZY

Start with a database of motions, each with
type and constraint information.

Goal: add transitions at opportune points.

Motion 1 Motion 1
» — & — § —
—
O —— & O m— @ — O

w Motion 2 Motion 2

Motion capture (Mocap)

Collect pose data with active sensing — special markers,
cameras.

12002 files/frame i

Motion Graphs

Idea: automatically add transitions within a
motion database

Walk straight Edge = clip
\ Node = choice point
=

Walk = motion
Turn 90 degrees

Quality: restrict transitions

@ Control: build walks that meet constraints

Slesl

i _;?)',_;_
= !“" )FrN'.nES[EE

Motion graphs

» Graphics application:
— Any walk on the graph is a valid motion
— Can synthesize new animation:
* Select motion clips from the graph
» Reassemble them to form new motion

— Maintain realism of motions because clips
retain subtle details of real motion.

+ Vision application:

— Non-parametric representation of human
motion dynamics

10



Example-based pose estimation
and animation

 Build a two-character motion graph from examples of
people dancing with mocap

» Populate database with synthetically generated
silhouettes in poses defined by mocap (behavior specific
dynamics)

+ Use discriminative silhouette features to identify similar
examples in database

Retrieve the pose stored for those similar examples to
estimate user’s pose

« Animate user and hypothetical partner

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.
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Overview

e Silhoustres

4_, — 010010100
Waw Feature Vector

M_010101
Body Configuration Feature Vect

a1
wittoo |* * * LI BT
1110100 ol

0 Degree Yaw Selected Yaw 350 Degree Yaw
36 Body Configuration Feature Databases

Human Motion Database

Pose parameters

— y g % 4
; <3
- a4

3d joint positions:
[x1y1z1, x2 y2, z2,...x20 y20 z20]

ab

2005

Rendering database examples

Learning Silhouetie Features for Controd of Human Mation ~ « 1315

body
Liration,
Int orientations

ht body
rations, same = ¥
ion :

Possible silhouette features

Feature selection

» Want to find features
that are
discriminative for
overall orientation,
and specific body
configuration

* Use boosting to
choose features that
separate “similar”’
and “dissimilar” pairs
well

{n) Pontive 1) Negative

11
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Feature selection

Some

features

selected with

AdaBoost

based on

- lIiiiII

classification
Feature | Feature 2 Feature § Featare 20

task

Two-character motion graph

+ Dancing partners’ motions are highly correlated

» Extend motion graph to represent partner’'s pose
relative to user’s

Example -based pose estimation and animation

Silhouettes

— 01001000
Yaw ﬁMuN' Vector

Three Video Streams.
hw Hash Tables

1. DH}IOI
Body Conﬁqumm Feature Vector

- Human Motion Database

.

0 Degree Yaw Sedected Yaw 350 Degree Yaw
35 Bady Configuration Feature Databates

|Ren_Shakhnarovich Hodains Pfister_and Viola 2005

* http://graphics.cs.cmu.edu/projects/swing/

* Issues?
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