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Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
l.e., our expectation of object’s motion pattern.



Tracking with dynamics

« Have a model of expected motion

« Given that, predict where objects will occur in
next frame, even before seeing the image

* |ntent:

— do less work looking for the object, restrict
search

— Improved estimates since measurement noise
tempered by trajectory smoothness



Tracking as inference: Bayes Filters

= Hidden state x,
— The unknown true parameters
— E.g., actual position of the person we are tracking

= Measurement y,
— Our noisy observation of the state
— E.g., detected blob’s centroid

m Can we calculate p(X; | Y15 Vo5 === ¥¢) ?

— Want to recover the state from the observed
measurements



States and observations

v/
State variabl
a

Hidden state is the list of parameters of interest

Measurement is what we get to directly observe (in
the images)



Recursive estimation

« Unlike a batch fitting process, -
decompose estimation

prObIem |nt0 State variabl

— Part that depends on new a
observation

— Part that can be computed —
from previous history a_a,

* For tracking, essential given

: . Example from last time:

typical goal of real-time running average

processing.



Tracking as inference

* Recursive process:

— Assume we have initial prior that predicts
state in absence of any evidence: P(X,)

— At the first frame, correct this given the value
of Yo=Y,

— Given corrected estimate for frame t
* Predict for frame t+1
« Correct for frame t+1 m

Time Update Measurement Update
£ ("“Correct’™)



Tracking as inference

* Prediction:

— Given the measurements we have seen up to
this point, what state should we predict?

P(Xi|Yo=yo- - Yio1 =y, 1).

 Correction:

— Now given the current measurement, what
state should we predict?

PIX.IYo~ ... Y: ~ 3,



Independence assumptions

* Only immediate past state influences
current state

P(Xi|Xy,..., X; ) = P(X,|X, )

 Measurements at time t only depend on
the current state



Tracking as inference

 Goal is then to

— choose good model for the prediction and
correction distributions

— use the updates to compute best estimate of
state

 Prior to seeing measurement
 After seeing the measurement



Gaussian distributions, notation

x ~ N(p, X)

« random variable with Gaussian probability
distribution that has the mean vector g and
covariance matrix .

X and u are d-dimensional, Z is d x d.

d=2 d=1




Linear dynamic model

* Describe the a priori knowledge about

— System dynamics model: represents evolution
of state over time, with noise

X T N(Dxt—l;zd)
t VAN

nx1 nNXn nx1

— Measurement model: at every time step we
get a noisy measurement of the state

~ N(Mx, X
}Tft (/‘X\t m)

m x 1 mxn nx1



Example: randomly X, ~ N(Dx,_;; Xy)
drifting points y, ~ N(Mx,;Z )

« Consider a stationary object, with state as position
« State evolution is described by identity matrix D=1

* Position is constant, only motion due to random
noise term.




Example: constant X, = N(Dx; 1 Bq)

velocity Yo ~ N(Mx; X))

« State vector x is 1d position and velocity.
 Measurement y is position only.

V

P = Pia T (At)Vt_l T é ) { p}
- X, = —

1

1At P :
0 1}[\/11+n0|3e

P o

W:W4+§

~/

A

=P o3 m=[o]




velocity

Figures
from F&P




State ~ State’s position over time
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State ~ State’s position over time
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x, ~ N(Dx,_;;X)
yt - N(MXt’Zm)

Example: constant
acceleration

« State is 1d position, velocity, and acceleration
 Measurement is position only.

P = Pyt (At)Vt_l + 5 h Nl T .

p| [1At 07 P
=lv| =01 At|v| +noise
V. =V, +(A)a_, + ¢ . a 00 11l a
| It — - dt-1
a =3, +¢ g L
D x.



State’s position and velocity

velocity

position

Constant

Acceleration
Model
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Kalman filter as density propagation

Distribution shifts due to
object dynamics model

deterministic drift
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Figure from Isard & Blake 1998

peak towards observation



Kalman filter as density propagation
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Kalman filtering

Know prediction of state,
receive current
P(XilYo=vg,.. .. Yic1=9Y,_1) measurement >

Update distribution over
current state estimate

Time update Measurement update
(“Predict”) (“Correct”)

Know corrected state _

from previous time step, P(XilYo=yp,....Yi=1y;)
and all measurements up

to the current one 2> TIME ADVANCES

Update distribution over i++

predicted state



Kalman filtering

 Linear models + Gaussian distributions
work well (read, simplify computation)

» Gaussians also represented compactly

prediction IJ(X-g‘Y[) = Yy - - Y., | = yi_—l)'



Kalman filter for 1d state

2
Dynamic % = N(dx,09 )
model y, ~ N(mx;, o7, )

Want to P(XilYo=yg,---, Y i1 :yi_—l)'
represent |
and update P(X;|Yo=v5.....Y; =y,)



Notation shorthand

mean of P(X;|yg....,y;_1)as X, < Predicted mean

. — N
mean of P(X;|yg. . ... y;) as X; <« Corrected mean
the standard deviation of P(X; yy. .. .. Y1) aso.
Yo Yi—1 i

of P(X;|yo,. ... Yi) as o f-.}



Kalman filtering

— _ Know prediction of state,
X ,0 i receive current
P(XilYo=vg,.. .. Yic1=9Y,_1) measurement >

Update distribution over
current state estimate

Time update Measurement update
(“Predict”) (“Correct”)

Know corrected state _

from previous time step, P(XilYo=yp,....Yi=1y;)
and all measurements up

to the current one 2> TIME ADVANCES

Update distribution over

predicted state v + +

i-100i1



Kalman filtering

5 _ _ Know prediction of state,
X ,0 i receive current

RS Y, 1= y-i—]) measurement 2>

Update distribution over
current state estimate

Time update
(“Predict”)

Measurement update
(“Correct”)

Know corrected state
from previous time step,
and all measurements up
to the current one -
Update distribution over

predicted state

TIME ADVANCES

v + +

i-100i1



Kalman filter for 1d state: prediction

* Linear dynamic model defines expected state

evolution, with noise:

X~ N(dxi—l’ad2 )

« Want to estimate distribution for next predicted state:
1}(X'5‘YU — Y5+ - - Y'f-—l — yi—l) — N (Xi_1 (Gi_)2 )

— Update the mean:
Xi_ - dff_l
— Update the variance:

(07)" =04 +(doy)*

Predicted mean depends on state
transition value (constant d), and
mean of previous state.

Variance depends on uncertainty
at previous state, and noise of
system’s model of state evolution.



Kalman filtering

— _ Know prediction of state,
X ,0 i receive current
P(XilYo=vg,.. .. Yic1=9Y,_1) measurement >
Update distribution over
current state estimate

Time update Measurement update
(“Predict”) (“Correct”)

Know corrected state _

from previous time step, P(XilYo=yp,....Yi=1y;)
and all measurements up

to the current one 2> TIME ADVANCES

Update distribution over

predicted state v + +

i-100i1



Kalman filter for 1d state: correction

Linear model of dynamics reflects how state is
mapped to measurements:

Yi N(mxi’ari )

Know predicted state distribution: B
P(Xi|Yo=yp,-...Yic1=vy, 1) =N(X",(c7)°)

Want to correct distribution over current state given
new measurement vy,

_ X o4 my. i( 0_—)2 Corrected state estimate

X =t L '2 incorporates current measurement,
o, +M (Gi_) predicted state, meas. model, and

their uncertainties.

2 Small measurement noise-> rely on?

2 Op (Gi ) Large measurement noise-> rely on?




Constant velocity model

Recall this example:

State

.} velocity | position

* ¥ 1 ) *

position  { T * ume

&

State is 2d: position + velocity
Measurement is 1d: position



position

Constant velocity model
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State is 2d: position + velocity
Measurement is 1d: position



position
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Constant velocity model

X measurement
* predicted mean estimate
+ corrected mean estimate

bars: variance estimates
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N-d Kalman filtering

* This generalizes to state vectors of any
dimension

* Update rulesin FP Alg 17.2



Data association

« We’ve assumed entire
measurement (y) was cue
of interest for the state

« But, there are typically
uninformative
measurements too—clutter.

« Data association: task of
determining which
measurements go with
which tracks.

http://www.dkimages.com/discover/previews/1002/50215713.JPG



Data association (single object
in clutter)

* Global nearest neighbor

— Choose to pay attention to the measurement
with the highest probability given the
predicted state

— Can lead to tracking non-existent object
* Probabilistic approach

— Weight the measurements by probability
given predicted state



/lwww.cs.bu.edu/~betke/research/bats/
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Censusing natural populations of bats is important for understanding the October 2007
ecological and economic impact of these animals on terrestrial ecosystems. - EcoTracker 2.1 posted
Colonies of Brazilian free-tailed bats (Tadarida brasiliensis) are of particular under Investigator
interest because they represent some of the largest aggregations of mammals Intranet

known to mankind. It is challenging to census these bats accurately, since they

emerge in large numbers at night from their day-time roosting sites. We have July 2007

used infrared thermal cameras to record Brazilian free-tailed bats in California, - Redesigned Website
Massachusetts, New Mexico, and Texas. We have developed an automated posted

image analysis system that detects, tracks, and counts the emerging bats. - EcoTracker 2.0 posted

under Investigator
Intranet

Research Team - Video of EcoTracker in
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June 2007
CVPR Paper
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s Nicholas C. Makris, Massachusetts Institute of Technology
» Gary F. McCracken, University of Tennessee
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Kalman filter limitations

« (Gaussian densities, linear dynamic model:
+ Simple updates, compact and efficient
— But, unimodal distribution, only single hypothesis
— Restricted class of motions defined by linear model

P(x)

- x~N(p,X)



Kalman filter as density propagation

Distribution shifts due to
object dynamics model

‘ pix) ‘ pix)
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iy * uncertainty
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due to
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component
A px) y A p(x) p .
Y of dynamics
model
X X
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What if we have several

peak towards observation competing observations, say

2
Figure from Isard & Blake 1998 due to clutter?



Recall conditional densities from skin
detection example

P(y | x=skin) o P(y | x=not skin)
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Density propagation with non-

Gaussian densities
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Figure from Isard & Blake 1998

reactive effect of measurement

How to represent a

/

nd update

these distributions?



Non-parametric representations
for non-Gaussian densities

Can represent
distribution with set
of weighted samples
(“particles™)




Factored sampling (single frame)

PrObabmty posterior
density

@ weighted

W

@ P @O .. o State

|

Represent the posterior|p(x|y) hon-parametrically:
« Sample points randomly from prior density

for the state, p(x).
« Weight the samples according to p(y|x).

Figure from Isard & Blake 1998



Particle filtering

Extend idea of sampling to propagate densities
over time (i.e., across frames in a video
sequence).

At each time step, represent posterior p(xy;)
with weighted sample set

Previous time step’s sample set p(x,|y4) is
passed to next time step as the effective prior

(a.k.a. survival of the fittest, sequential Monte
Carlo filtering, Condensation [Isard & Blake 96])



Particle filtering: Condensation

Start with weighted
samples from previous

\ time step




Particle filtering: Condensation

Start with weighted
samples from previous
time step

Sample and shift
according to dynamics
model




Particle filtering: Condensation

Start with weighted
samples from previous
time step

Sample and shift
according to dynamics
model

Spread due to
randomness; this is
effective prior density

P(XlYi.1)




Particle filtering: Condensation

observation

densit
y \\ ~

—

vy Yyvyvy

\

drift

diffuse

measure

— -

Start with weighted
samples from previous
time step

Sample and shift
according to dynamics
model

Spread due to
randomness; this is
effective prior density

P(XlYi.1)

Weight the samples
according to
observation density




Particle filtering: Condensation

observation

density \\\x

drift

diffuse

Start with weighted
samples from previous
time step

Sample and shift
according to dynamics
model

Spread due to
randomness; this is
effective prior density

P(XilYe1)
Weight the samples
according to

observation density

Arrive at current

estimate for posterior

Figure from Isard & Blake 1998

P(XlYt)



Particle filtering: Condensation

The green spheres correspond to the members of the
sample set, where the size of the sphere is an indication of
the sample weight. The red line is the measurement density
function.
http://www.robots.ox.ac.uk/~misard/condensation.html




Particle filtering: what we need

Initialize according to prior

on state p(x,)

Conditional density p(y|x) is
defined
* e.g., render model
according to state x, then
compare actual image
and that rendering

Object dynamics p(xyx; 1)



Particle filtering

ﬂlllillislic N
3
pr xJ

A
pix)
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stochastic diffusion
L L
pix) pix)
_/\/\ N _/_/\ .
reachive effect of measurement

This matches our general picture of density
propagation, and the prediction-correction cycle
of tracking with dynamics.



Condensation-based results

Monitor is a distractor, multiple Kalman filter fails once it starts
hypotheses necessary. tracking the monitor.

http://www.robots.ox.ac.uk/~vdg/dynamics.html
Visual Dynamics Group, Dept. Engineering Science, University of Oxford
1998




Condensation-based results

20

Switching between multiple
motion models.

http://www.robots.ox.ac.uk/~vdg/dynamics.html
Visual Dynamics Group, Dept. Engineering Science, University of Oxford
1998




Issues

Initialization

— Often done manually

Data association, multiple tracked objects
— Occlusions

Deformable and articulated objects
Constructing accurate models of dynamics

Next, a brief look at an example-based
technique for estimating pose and
representing human motion dynamics...



OBSERVE
\RETARG E

Motion Graphs o
Kovar, Gleicher, Pighin ‘02

Start with a database of motions, each with
type and constraint information.

Goal: add transitions at opportune points.

Motion 1 Motion 1
.—. .#.ﬁ.
- o\
.—. .ﬁ.#.

w Motion 2 Motion 2

http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm



OBSERV

ADAPT (—//
\—)SYNTH ESIZE

;

Motion Graphs

|ldea: automatically add transitions within a
motion database

Walk straight

e ® Edge = clip

\ Node = choice point

() ey () \alk = miotion
Turn 90 degrees

Quality: restrict transitions
w Control: build walks that meet constraints

http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm



Motion capture (Mocap)

Collect pose data with active sensing — special markers,
cameras.

http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm



Motion graphs

* Graphics application:
— Any walk on the graph is a valid motion

— Can synthesize new animation:
« Select motion clips from the graph
« Reassemble them to form new motion

— Maintain realism of motions because clips
retain subtle details of real motion.

* Vision application:

— Non-parametric representation of human
motion dynamics



Example-based pose estimation
and animation

« Build a two-character motion graph from examples of
people dancing with mocap

 Populate database with synthetically generated
silhouettes in poses defined by mocap (behavior specific
dynamics)

« Use discriminative silhouette features to identify similar
examples in database

* Retrieve the pose stored for those similar examples to
estimate user’s pose

 Animate user and hypothetical partner

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.



Overview

Silhouettes

— 010..010101
Yaw Feature Vector

¢ |
) g g—

Animated Sequence

Three Video Streams l
Yaw Hash Tables
111..010101 - =
Body Configuration Feature Vector |

- \ - - Human Motion Database

010..1011 110..1011 010..1111
101..1100 . e 1011110 |® ® ®*] 111110

111..0100 111..0101

111..0100

0 Degree Yaw Selected Yaw 350 Degree Yaw
36 Body Configuration Feature Databases

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.



Pose parameters

3d joint positions:
[x1y12z1, x2y2, z2,...x20 y20 z20]



Rendering database examples

Learning Silhouette Features for Control of Human Motion . 1315

body
uration,
:nt orientations

nt body
Jrations, same
ition




Possible silhouette features




(a) Positive

Feature selection

(b) Negative

Want to find features
that are
discriminative for
overall orientation,
and specific body
configuration

Use boosting to
choose features that
separate “similar”
and “dissimilar” pairs
well



Some
features
selected with
AdaBoost
based on
paired
classification
task

Feature selection

Feature 1

Feature 2

Feature 5

Feature 20




Two-character motion graph

« Dancing partners’ motions are highly correlated

« Extend motion graph to represent partner’'s pose
relative to user’s



— 010..010101
Yaw Feature Vector

Animated Sequence

Three Video Streams l

Yaw Hash Tables
111..010101 - >
Body Configuration Feature Vector l

- \ - - Human Motion Database

010...1011 110..1011 010..1111
101..1100 * 101..1110 111..1110

111..0100 111..0100 111..0101

0 Degree Yaw Selected Yaw 350 Degree Yaw

36 Body Configuration Feature Databases

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.



* http://graphics.cs.cmu.edu/projects/swing/
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