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Detection vs trackingDetection vs. tracking

…

Tracking with dynamics: We use imageTracking with dynamics: We use image 
measurements to estimate position of object, but 
also incorporate position predicted by dynamics, 
i.e., our expectation of object’s motion pattern.



Tracking with dynamicsTracking with dynamics

• Have a model of expected motionHave a model of expected motion
• Given that, predict where objects will occur in 

next frame, even before seeing the imagee a e, e e be o e see g e age
• Intent: 

– do less work looking for the object restrictdo less work looking for the object, restrict 
search

– improved estimates since measurement noiseimproved estimates since measurement noise 
tempered by trajectory smoothness



Tracking as inference: Bayes Filters
Hidden state xt
– The unknown true parametersThe unknown true parameters
– E.g., actual position of the person we are tracking

Measurement yt
– Our noisy observation of the state

E d t t d bl b’ t id– E.g., detected blob’s centroid

Can we calculate p(xt | y1, y2, …, yt) ?p( t | y1, y2, , yt)
– Want to recover the state from the observed 

measurements



States and observationsStates and observations

Hidden state is the list of parameters of interest
Measurement is what we get to directly observe (inMeasurement is what we get to directly observe (in 

the images)



Recursive estimationRecursive estimation

• Unlike a batch fitting process,Unlike a batch fitting process, 
decompose estimation 
problem into
– Part that depends on new 

observation
– Part that can be computed 

from previous history
• For tracking, essential given 

typical goal of real-time 
i

Example from last time: 
running average

processing.



Tracking as inferenceTracking as inference

• Recursive process:Recursive process:
– Assume we have initial prior that predicts

state in absence of any evidence: P(X0)state in absence of any evidence: P(X0)
– At the first frame, correct this given the value 

of Y0=y0of Y0 y0

– Given corrected estimate for frame t
• Predict for frame t+1
• Correct for frame t+1



Tracking as inferenceTracking as inference

• Prediction:Prediction:
– Given the measurements we have seen up to 

this point what state should we predict?this point, what state should we predict?

• Correction:
– Now given the current measurement, what 

state should we predict?



Independence assumptionsIndependence assumptions

• Only immediate past state influencesOnly immediate past state influences 
current state

• Measurements at time t only depend on 
the current state



Tracking as inferenceTracking as inference

• Goal is then toGoal is then to 
– choose good model for the prediction and 

correction distributionscorrection distributions
– use the updates to compute best estimate of 

statestate
• Prior to seeing measurement
• After seeing the measurement



Gaussian distributions, notation
),(~ Σμx N

• random variable with Gaussian probability 
distribution that has the mean vector μ and μ
covariance matrix Σ.

• x and μ are d-dimensional, Σ is d x d.

d=2 d=1



Linear dynamic model
• Describe the a priori knowledge about 

– System dynamics model: represents evolution 
of state over time, with noise

)( );(~ 1 dtt N ΣDxx −

n x n n x 1n x 1

– Measurement model: at every time step we 
t i t f th t tget a noisy measurement of the state

);(~ mtt N ΣMxy
m x n n x 1m x 1



Example: randomly 
d ifti i t

);(~ 1 dtt N ΣDxx −

drifting points

C id t ti bj t ith t t iti

);(~ mtt N ΣMxy

• Consider a stationary object, with state as position
• State evolution is described by identity matrix D=I

Position is constant only motion due to random• Position is constant, only motion due to random 
noise term.



Example: constant 
l it

);(~ 1 dtt N ΣDxx −

)(N ΣM

• State vector x is 1d position and velocity.

velocity );(~ mtt N ΣMxy

State vector x is 1d position and velocity.
• Measurement y is position only.

ξΔ )( ξ+Δ+= −− 11 )( ttt vtpp

ζ+= −1tt vv
noisev

pt
v
p

tt
t +⎥⎦

⎤
⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡ Δ=⎥⎦

⎤
⎢⎣
⎡=

−1
10

1x
ζ−1tt

[ ] ξξ +=+⎥⎦
⎤

⎢⎣
⎡= t

t
t pv

p01y

⎥
⎤

⎢
⎡= px

⎥
⎤

⎢
⎡ Δ= 1 tD [ ]01=M

⎦⎣ t

⎥⎦⎢⎣
= vx

⎥⎦⎢⎣
= 10D [ ]01=M



State’s position over timeState
lo

ci
ty

ve
l

position

State and 
measurements

Figures 
from F&P



State’s position over timeState
lo

ci
ty

si
tio

n

ve
l

po
s

position time

State and 
measurements

Figures 
from F&P



State’s position over timeState
lo

ci
ty

si
tio

n

ve
l

po
s

position time

measurements

state

Figures 
from F&P time



Example: constant 
l ti

);(~ 1 dtt N ΣDxx −

)(N ΣM

• State is 1d position, velocity, and acceleration

acceleration );(~ mtt N ΣMxy

State is 1d position, velocity, and acceleration
• Measurement is position only.
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State’s position and velocity State’s position over time



Kalman filter as density propagation
Distribution shifts due to 
object dynamics model

increased 
uncertainty 
due to 
randomrandom 
component 
of dynamics 
model

Figure from Isard & Blake 1998

peak towards observation



Kalman filter as density propagation

measurement

belief
belief

belief

new belief

old belief

Slide by S. Thrun and J. Kosecka, Stanford



Kalman filteringKalman filtering
Know prediction of state, 
receive current 
measurement 
Update distribution over 

t t t ti tcurrent state estimate

Time update
(“Predict”)

Measurement update
(“Correct”)

Know corrected state 
from previous time step, 

( Predict ) ( Correct )

and all measurements up 
to the current one 
Update distribution over 

di t d t t

TIME ADVANCES
i++

predicted state



Kalman filteringKalman filtering

• Linear models + Gaussian distributionsLinear models + Gaussian distributions 
work well (read, simplify computation)

• Gaussians also represented compactly• Gaussians also represented compactly

predictionprediction

correction



Kalman filter for 1d stateKalman filter for 1d state

)( 2dxNx σDynamic 
model

),(~ 1 dii dxNx σ−

),(~ 2
mii mxNy σ ),( miiy

Want to 
represent 

d d tand update



Notation shorthandNotation shorthand



Kalman filteringKalman filtering
Know prediction of state, −−X σ receive current 
measurement 
Update distribution over 

t t t ti t

iiX σ,

current state estimate

Time update
(“Predict”)

Measurement update
(“Correct”)

Know corrected state 
from previous time step, 

( Predict ) ( Correct )

and all measurements up 
to the current one 
Update distribution over 

di t d t t

TIME ADVANCES

predicted state +
−

+
− 11, iiX σ



Kalman filteringKalman filtering
Know prediction of state, −−X σ receive current 
measurement 
Update distribution over 

t t t ti t

iiX σ,

current state estimate

Time update
(“Predict”)

Measurement update
(“Correct”)

Know corrected state 
from previous time step, 

( Predict ) ( Correct )

and all measurements up 
to the current one 
Update distribution over 

di t d t t

TIME ADVANCES

predicted state +
−

+
− 11, iiX σ



Kalman filter for 1d state: prediction
• Linear dynamic model defines expected state 

evolution, with noise:,

• Want to estimate distribution for next predicted state:

),(~ 2
1 dii dxNx σ−

• Want to estimate distribution for next predicted state:
))(,( 2−−= iiXN σ

– Update the mean:
+− = 1ii XdX

Predicted mean depends on state 
transition value (constant d), and 

– Update the variance:
−1ii

222

mean of previous state.

Variance depends on uncertainty 
2

1
22 )()( +

−
− += idi dσσσ at previous state, and noise of 

system’s model of state evolution.



Kalman filteringKalman filtering
Know prediction of state, −−X σ receive current 
measurement 
Update distribution over 

t t t ti t

iiX σ,

current state estimate

Time update
(“Predict”)

Measurement update
(“Correct”)

Know corrected state 
from previous time step, 

( Predict ) ( Correct )

and all measurements up 
to the current one 
Update distribution over 

di t d t t

TIME ADVANCES

predicted state +
−

+
− 11, iiX σ



Kalman filter for 1d state: correction
• Linear model of dynamics reflects how state is 

mapped to measurements:
)(~ 2mxNy σ

• Know predicted state distribution:
))(( 2−−XN σ

),(~ mii mxNy σ

• Want to correct distribution over current state given 
t

))(,(= iiXN σ

new measurement      :
– Update mean

22 )( −−
+ + iimi myXX σσ Corrected state estimate 

i t t t

– Update variance
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incorporates current measurement, 
predicted state, meas. model, and 
their uncertainties.
Small measurement noise rely on?
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Constant velocity modelConstant velocity model
Recall this example:

State

State is 2d: position + velocity 
Measurement is 1d: position



Constant velocity modelConstant velocity model

measurements

os
iti

on

state

p

time
State is 2d: position + velocity 
Measurement is 1d: position



Constant velocity model
Kalman filter processing

o state

y

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates

os
iti

on
p

time



Constant velocity model

o state

y

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates
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time



N-d Kalman filteringN d Kalman filtering

• This generalizes to state vectors of anyThis generalizes to state vectors of any 
dimension

• Update rules in FP Alg 17 2• Update rules in FP Alg 17.2



Data associationData association
• We’ve assumed entire 

t ( )measurement (y) was cue 
of interest for the state

• But there are typically• But, there are typically 
uninformative 
measurements too–cluttermeasurements too clutter.

• Data association:  task of 
determining whichdetermining which 
measurements go with 
which tracks.

http://www.dkimages.com/discover/previews/1002/50215713.JPG



Data association (single object 
)in clutter)

• Global nearest neighborGlobal nearest neighbor
– Choose to pay attention to the measurement 

with the highest probability given thewith the highest probability given the 
predicted state

– Can lead to tracking non-existent objectCan lead to tracking non existent object
• Probabilistic approach

Weight the measurements by probability– Weight the measurements by probability 
given predicted state
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Kalman filter limitationsKalman filter limitations

• Gaussian densities, linear dynamic model:Gaussian densities, linear dynamic model:
+ Simple updates, compact and efficient
– But, unimodal distribution, only single hypothesisy g yp
– Restricted class of motions defined by linear model

)(~ Σμx NP(
x) ),( Σμx NP

x



Kalman filter as density propagation
Distribution shifts due to 
object dynamics model

increased 
uncertainty 
due to 
randomrandom 
component 
of dynamics 
model

y

Figure from Isard & Blake 1998

peak towards observation
What if we have several 
competing observations, say 
due to clutter?



Recall conditional densities from skin 
detection exampledetection example
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Measurement is feature y = [R G B]

Bayes’ rule: P(skin | y) α P(y | skin) P(skin)Bayes’ rule: P(skin | y) α P(y | skin) P(skin)



Density propagation with non-
Gaussian densitiesGaussian densities

y

Figure from Isard & Blake 1998

How to represent and update 
these distributions?



Non-parametric representations 
for non-Gaussian densities

Can represent 
distribution with set 
of weighted samplesof weighted samples 
(“particles”)



Factored sampling (single frame)p g ( g )

Represent the posterior p(x|y) non-parametrically:Represent the posterior p(x|y) non parametrically:
• Sample points randomly from prior density   

for the state, p(x).

Figure from Isard & Blake 1998

• Weight the samples according to p(y|x).



Particle filteringParticle filtering
• Extend idea of sampling to propagate densities 

over time (i.e., across frames in a video 
sequence).

• At each time step, represent posterior p(xt|yt) 
with weighted sample set

• Previous time step’s sample set p(xt|yt-1) is 
passed to next time step as the effective prior

• (a.k.a. survival of the fittest, sequential Monte 
Carlo filtering, Condensation [Isard & Blake 96])



Particle filtering: Condensationg
Start with weighted 
samples from previous 
time step

Shift each sample 
according to dynamics g y
model

Spread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samplesWeight the samples 
according to 
observation density

Arrive at current 
estimate for posterior 
p(xt|yt) Figure from Isard & Blake 1998



Particle filtering: Condensationg
Start with weighted 
samples from previous 
time step

Sample and shift 
according to dynamics g y
model

Spread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samplesWeight the samples 
according to 
observation density

Arrive at current 
estimate for posterior 
p(xt|yt) Figure from Isard & Blake 1998
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Weight the samplesWeight the samples 
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Particle filtering: Condensationg
Start with weighted 
samples from previous 
time step

Sample and shift 
according to dynamics g y
model

Spread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samplesWeight the samples 
according to 
observation density
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Particle filtering: Condensationg
Start with weighted 
samples from previous 
time step

Sample and shift 
according to dynamics g y
model

Spread due to 
randomness; this is 
effective prior density 
p(xt|yt-1) 

Weight the samplesWeight the samples 
according to 
observation density

Arrive at current 
estimate for posterior 
p(xt|yt) Figure from Isard & Blake 1998



Particle filtering: CondensationParticle filtering: Condensation

The green spheres correspond to the members of the 
sample set, where the size of the sphere is an indication of 
the sample weight. The red line is the measurement densitythe sample weight. The red line is the measurement density 
function.
http://www.robots.ox.ac.uk/~misard/condensation.html



Particle filtering: what we needParticle filtering: what we need

Initialize according to priorInitialize according to prior 
on state p(x0)

C diti l d it ( | ) iConditional density p(y|x) is 
defined

• e.g., render model 
according to state x, then 
compare actual image 
and that renderingand that rendering

Object dynamics p(xt|xt-1)



Particle filteringParticle filtering

This matches our general picture of density 
propagation and the prediction correction cyclepropagation, and the prediction-correction cycle 
of tracking with dynamics.



Condensation-based resultsCondensation based results

Monitor is a distractor, multiple 
hypotheses necessary.

Kalman filter fails once it starts 
tracking the monitor.

http://www.robots.ox.ac.uk/~vdg/dynamics.html
Visual Dynamics Group, Dept. Engineering Science, University of Oxford
19981998



Condensation-based resultsCondensation based results

Switching between multiple 
motion models.

http://www.robots.ox.ac.uk/~vdg/dynamics.html
Visual Dynamics Group, Dept. Engineering Science, University of Oxford
19981998



Issues

• InitializationInitialization
– Often done manually

• Data association multiple tracked objectsData association, multiple tracked objects
– Occlusions

• Deformable and articulated objects• Deformable and articulated objects
• Constructing accurate models of dynamics

Next, a brief look at an example-based 
technique for estimating pose andtechnique for estimating pose and 
representing human motion dynamics…



http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm



http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm



Motion capture (Mocap)Motion capture (Mocap)
Collect pose data with active sensing – special markers, 
camerascameras.

http://www.cs.wisc.edu/graphics/Talks/Gleicher/2002/AnimByExample_files/frame.htm



Motion graphsMotion graphs

• Graphics application:Graphics application:
– Any walk on the graph is a valid motion
– Can synthesize new animation:Can synthesize new animation:

• Select motion clips from the graph
• Reassemble them to form new motion

– Maintain realism of motions because clips 
retain subtle details of real motion.

Vi i li ti• Vision application:
– Non-parametric representation of human 

motion dynamicsmotion dynamics



Example-based pose estimation 
d i tiand animation

• Build a two-character motion graph from examples of g p p
people dancing with mocap

• Populate database with synthetically generated 
ilh tt i d fi d b (b h i ifisilhouettes in poses defined by mocap (behavior specific 

dynamics)

• Use discriminative silhouette features to identify similar• Use discriminative silhouette features to identify similar 
examples in database

• Retrieve the pose stored for those similar examples toRetrieve the pose stored for those similar examples to 
estimate user’s pose

• Animate user and hypothetical partner

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.



Overview

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.



Pose parametersPose parameters

3d j i i i3d joint positions:

[x1 y1 z1, x2 y2, z2,…x20 y20 z20]



Rendering database examplesRendering database examples

 body 
guration, 
ent orientationsent orientations

nt bodynt body 
urations, same 
ation



Possible silhouette features



Feature selectionFeature selection

W t t fi d f t• Want to find features 
that are 
discriminative for 
overall orientation, 
and specific body 
configurationconfiguration

• Use boosting to 
choose features that 
separate “similar” 
and “dissimilar” pairs 
wellwell



Feature selectionFeature selection

Some 
features 

l t d ithselected with 
AdaBoost 
based on 

i dpaired 
classification 
task



Two-character motion graphTwo character motion graph

• Dancing partners’ motions are highly correlatedDancing partners  motions are highly correlated
• Extend motion graph to represent partner’s pose 

relative to user’s



Example-based pose estimation and animationp p

Ren, Shakhnarovich, Hodgins, Pfister, and Viola, 2005.



• http://graphics.cs.cmu.edu/projects/swing/



• Issues?Issues?
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