Lecture 3: Binary image analysis

Thursday, Sept 6

» Sudheendra’s office hours
—Mon, Wed 1-2 pm
— ENS 31NR

 Forsyth and Ponce book

Binary images

» Two pixel values
» Foreground and background
» Regions of interest
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Constrained image capture setting
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R. Nagarajan et al. A real time marking inspection scheme
for semiconductor industries, 2006

Medical, bio data




Intermediate low-level cues

Motion

Orientation

NASA robonaut
htip://robonautjsc.nasa.govistatus/October_primehtm

Outline

» Thresholding
» Connected components
» Morphological operators
» Region properties

— Spatial moments

— Shape
+ Distance transforms

— Chamfer distance

Selecting thresholds

* Partition a bimodal histogram
* Fit Gaussians
» Dynamic or local thresholds

Shape

visual hulls
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Raw visual hull

Bayesan reconstruction

Medial axis

Thresholding

» Grayscale -> binary mask
» Useful if object of interest’s intensity
distribution is distinct from background
crsa_{ 1if F[i4=T
Fali 1= i 0 otherwise.

a1t TEFLA<T,
Fali,J] t 0 otherwise.

rs o Lif Flidez
Fali, ) i 0 otherwise.

« Examplehttp://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FITZ
GIBBON/simplebinary.html
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A nice case: bimodal intensity
histograms

» Example
e Thresholding a bimodal histogram

» Otsu method (1979) : automatically select
threshold by minimizing the weighted
within-group variance of the two groups of
pixels separated by the threshold.

Not so nice cases

» Threshold selection is an art, not a science

Two distinct modes Overlapped modes

Shapiro and Stockman

Connected components

« |dentify distinct regions
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Connected components

connected
components
of 1's from
thresholded
image

connected
components
of cluster
labels

Connectedness

» Which pixels are considered neighbors
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4-connected 8-connected

Image from http://www-ee.uta.edu/Online/Devarajan/ee6358/BIP.pdf

P Duygulu

Connected components

* Various algorithms to compute
— Recursive (in memory)

— Two rows at a time (image not necessarily in
memory)

— Parallel propagation strategy




Recursive connected components

» Find an unlabeled pixel, assign it a new
label

* Search to find its neighbors, and
recursively repeat to find their neighbors til
there are no more

* Repeat

M Demo http://www.cosc.canterbury.ac.nz/mukundan/covn/Label.html

* Process the image from left to
right, top to bottom.
1. If the next pixel to process is 1-

pixel Already processed

J mm' If enly one of its neighbors
(superior or |eft) is 1-pixel, copy
its label.

2. If both are, and have the same

label, copy it
AS If they have different labels: 32N
superior? smallest? %I s, 8}
1. Copy the label from the o
priot + Re-label with the smallest of

2. Reflect the change in the

equivalent labels.
‘| table of equivalences,

+ Pixels of the same segment

.4 Otw, assign a new label always have the same label

2. More pixels? Go to step 1.

Sequential connected components

+ Labeling a pixel only requires to E [ |
consider its prior and superior ==
neighbors. _=§._J—mj:_—, =
+ It depends on the type of ’
connectivity used for foreground %
(4-connectivity here)
] o> E

Same object MNew object

(ay (&) () (d)

‘What happens in these cases?

W =

ulin

Equivalence table

Slide from J. Neira

Morphological operators

« Dilation
* Erosion

» Open, close

Dilation
» Expands connected components
» Grow features
* Fill holes

Before dilation After dilation

Structuring elements

» Masks of varying shapes used to perform
morphology

» Scan mask across foreground pixels to
transform the binary image




Dilation / Erosion

« Dilation: if current pixel is
foreground, set all pixels
under S to foreground in
output (OR)

« Erosion: if every pixel
under S is foreground,
leave as is; otherwise,
set current pixel to
background in output

Example for Dilation (1D)

Input image |1 ‘0 ‘O ‘0 ‘1 ‘1 ‘1 ‘O ‘1 ‘1 |

S ing Elempdt |1 |1
tructuring Elempit g(x)=f(x)®SE

Output Image |1 ‘1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Adapted from T. Moeslund

Example for Dilation

Input image |1 ‘0 ‘0 ‘O ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |

:
Structuring Element

Output Image | 1 ‘ 1 ‘ ‘ ‘ ‘ ‘

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘1 ‘1 |
.
Structuring Element

!

Output Image |1 ‘1 ‘0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Dilation

Input image |1 ‘O ‘0 ‘0 ‘1 ‘l ‘1 ‘0 ‘1 ‘1 |

Structuring Element

Output Image |l ‘1 ‘0 ‘0 ‘ ‘ ‘

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘l ‘1 |

Structuring Element

Output Image |1 ‘1 ‘O ‘l ‘1 ‘1 ‘ ‘ ‘ ‘ |




Example for Dilation

Input image |1 ‘O ‘O ‘O ‘1 ‘1 ‘1 ‘O ‘l ‘1 |

Structuring Element

Output Image |l ‘1 ‘0 ‘1 ‘1 ‘l ‘1 ‘ ‘ ‘ |

Example for Dilation

Input image |]_ ‘0 ‘0 ‘O ‘1 ‘1 ‘1 ‘0

E

Structuring Element

ouputimage (1 1 Jo [1 [1]1 1 [1

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |
:
Structuring Element

Output Image |1 ‘1 ‘O ‘1 ‘1 ‘1 ‘1 ‘1 ‘ ‘ |

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘0
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Structuring Element
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Erosion
» Erode connected components
* Shrink features
* Remove bridges, branches, noise

Before erosion After erosion

Output Image |1 ‘1 ‘0 ‘1 ‘1 ‘1 ‘1 ‘1 ‘1 ‘1 |
The object gets bigger and holes are filled!
Example for Erosion (1D)
Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘l ‘1 |
Structuring Elem
l g(x) = f(x)OSE

Output Image |O ‘ ‘ ‘ ‘ ‘ ‘ ‘




Example for Erosion (1D)

Input image |1 ‘O ‘0 ‘0 ‘1 ‘l ‘1 ‘0 ‘1 ‘1 |
: !
Structuring Element _
1 g(x) = f(x)OSE
Output Image |0 ‘O ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Erosion

Example for Erosion

Input image |1 \0 \0 \O \1 \1 \1 ‘0 ‘1 ‘1 |
4

ofofofo [ [ [ [ [ |

Structuring Element

Output Image

Example for Erosion

Input image |1 ‘O ‘0 ‘0 ‘1 ‘l ‘1 ‘0 ‘1 ‘1 |

§

ofofofofofa | [ [ [ |

Structuring Element

Output Image

Input image |]_ ‘0 ‘0 ‘O ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |
Structuring Element
Output Image | 0 ‘ 0 ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ |
Example for Erosion
Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘1 ‘1 |
] !
Structuring Element
Output Image | 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ ‘ ‘ ‘ |
Example for Erosion
Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘l ‘1 |

!

Structuring Element

ouputimage [0 [0 [o Jo o [1 Jo |




Example for Erosion

Input image |1 ‘O ‘0 ‘O ‘1 ‘1 ‘1 ‘O ‘l ‘1 |

!

ouputimage [0 Jo [o JoJoJ1 JoJo [ | ]

Structuring Element

Example for Erosion

Input image |]_ ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |

l

outputimage [0 [0 [0 [o Jo |1 Jo Jo Jo | |

Structuring Element

Example for Erosion

inputimage  [1 [o Jo Jo [1 [1 [1 Jo 1 [1 ]
.
Structuring Element

!

Output Image |O ‘O ‘O ‘O ‘0 ‘1 ‘O ‘O ‘O ‘1 |

The object gets smaller

Dilation / Erosion

« Dilation: if current pixel is o000
foreground, set all pixels g (ll ;g
under S to foreground in
output (OR) b origin
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« Erosion: if every pixel argin
under S is foreground,
leave as is; otherwise,
set current pixel to
background in output
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Opening

* Erode, then dilate
* Remove small objects, keep original shape

Before opening After opening

Images by P. Duygulu

Closing

« Dilate, then erode
* Fill holes, but keep original shape

Before closing After closing




Application: blob tracking

Absolute differences from frame to frame

Application: segmentation of a liver

. F Largest Boundary
Region Filling Region Peeling

Application by Jie Zhu, Cornell University

Slide credit: Li Shen

Threshold

Application: blob tracking

» Background subtraction + blob tracking

Region properties

Some useful features can be extracted once
we have connected components, including

* Area

 Centroid

« Extremal points, bounding box
Circularity

Spatial moments




Area and centroid

* We denote the set of pixels in a region by R.

e assuming square pixels:

area:
A= % 1
(releR
centroid:
f =% Zpoer
& =% Zpaer c

® (7, &) is generally not a pair of integers.

Shapiro &
Stockman

Circularity

<o second measure uses variation off of a circle
cireularity(2):
G="2
or
where g and #g° are the mean ard variance
of the distance from the centroid of the shape
to the boundary pixels (rg, c).
mean radial distance:

1Kt N (5 2
BR= E] (rx,cx) = (7, )

variance of radial distance:

s 1A 3
op=— ¥ [[l(re,ce) = (&) = pz]
K

[Haralick]

Shapiro &
Stockman

Invariant descriptors

[al, a2, a3,...]

[b1, b2, b3,...]

Often want features independent of
position, orientation, scale.

Feature
space
distance

Central moments

S is a subset of pixels (region).
Central (j,k)" moment defined as:

Hp =D (x=x)(y=- )

(x.y)eS

« Invariant to translation of S.

Central moments

» 2nd central moment: variance
31 central moment: skewness
» 4% central moment: kurtosis

Axis of least second moment

« Invariance to orientation?
Need a common alignment

_- Axis for which the
squared distance
. to 2d object points
is minimized.

~
~~




Distance transform

» Image reflecting distance to nearest point
in point set (e.g., foreground pixels).

4-connected 8-connected
adjacency adjacency

Distance transform

Edge image Distance transform image

Distance transform (1D)

Two pass O(n) algorithm for 1D L; norm

1. Initialize: For all j
D[j] « 1p[i]
2. Forward: For j from 1 up to n-1 [i]9]
D[j] « min(D[j],D[j-1]+1)
3. Backward: For j from n-2 down to 0
D[j] « min(D[j],D[j+1]+1)
E |3 CI B3 1 B3 B3 B3 D )

. [=]o]1T0oJ1]2]3]0]1]

(z]ojzfof1]2]1]0f1]

Adapied flom D

Distance Transform (2D)

= 2D case analogous to 1D
- Initialization
- Forward and backward pass
* Fwd pass finds closest above and to left
* Bwd pass finds closest below and to right
= Note nothing depends on 0, form of
initialization
- Can “distance transform” arbitrary array
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Chamfer distance

» Average distance to nearest feature

L R 1
Detamger(T.1) = 11 > di(t)
teT

TEEm Ty !
# A il
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Edge image Distance transform image

D. Gavrila, DAGM 1999

Chamfer distance

More on this and
other distances

ity

Edge image Distance transform image

D. Gavrila, DAGM 1999




Generalized distance transforms

» Same forward/backward algorithm
applicable with different initialization

* Initialize with function values F(x,y):

Generalized Distance Transform

D(p)=min (|| p—q||+F(g))

qel

Distance Transform vs.
Generalized Distance Transform

m Assuming F(p):{o if pCI)XSJ p is image feature}
0 WL

then D(p) = min{|| p-gl|+F (@}=_min || p-q]|
is standard Distance Transform (of image features)

_t® SR -+ S to .
- - ~ - o
F(p
D%\
N 1
Slide credit Y. Boykov Locations of binary image features

Distance Transform vs.
Generalized Distance Transform

Location of
m For general F(p) qis close

to p, and

D(p) =min{|| p—ql+F (@)} O here
is Generalized Distance Transform of F(p)

F(p)

D(p

! F(p) may represent non-binary image features (e.g. image intensity gradient)

Slide credit Y. Boykov

Binary images

* Pros
— Can be fast to compute, easy to store
— Simple processing techniques available
— Lead to some useful compact shape descriptors

e Cons

— Hard to get “clean” silhouettes, noise common in
realistic scenarios

— Can be too coarse of a representation
— Not 3d

Matlab

¢ N =HIST(Y,M)

¢« L=BWLABEL(BW,N);

¢ STATS = REGIONPROPS(L,PROPERTIES) ;
- '‘Area’

- ‘Centroid'

- '‘BoundingBox'

- ‘Orientation’, ...

IM2 = imerode(IM,SE);

IM2 = imdilate(IM,SE);

IM2 = imclose(IM, SE);

IM2 = imopen(IM, SE);

[D,L] = bwdist(BW,METHOD);

 Everything is matrix

%%%% Matrix Definition 1 %%%%
b= [12 3 4:56 7 8]:

1

2

3

4 %%%% Matrix Definition 2 %%%%
3 A= [1:1:49; 5:1:8]:
&

=

8

%%%% Matrix Definition 3 $%%%
for i = 1:2
a for 3 = 1:4
10 B(i,3) = (i-1) *443;
11 end
1z end
13|
14 %%%% Matrix Definition 4 %%%%
15 &= [1:
16 A4 = zeros(m,n); %ones zeros eye rand randn

Tutorial adapted from W. Freeman, MIT 6.896




» Matrix index

1 AaEs M o
18 & = magici4):

20 EE

21 16 H E 13
2z 3 11 mn &
23 El 7 3 12
24 4 14 15 1
25 1:21

26 ans =

27 Z

28 11

29

30 23 ans =

a1 16

Iz 5

33 Ll

34 4

35 R(L, 1)

36 »» nna =

37 18 z 3 13
I k(L6 T

a8 > ans =

40 11

* Manipulate matrices

FUIY 2
a5
a8
a7
a8
A
=
E
=
=
=1
=5
=
=
=
=
0
£1
&
e
£
£5  nantleg = iss

£ w» nARElog =
e o 1 [l 1

19inE Al
™ wx inifleg =

» Manipulate matrices

75  k33% Matrix operation 95
76 A = [1 2:3 4]: LU
27 B = [11:1 -1]: . <"
78 A%B o
as
79 »> ans = 100 €=
80 3 “1 101
81 7 -1 102 1 2
82 A.7B 0 - 4
83 »r ans =
84 1
85 3 -2
86 A/B &= Lt inv(E
87 >>ans = N N
s 1.5 -0.5 mum(k.*A} = &
89 3.5 -0.5
90 A./B
91 Fr oans =
9z 1 z
93 3 -4

 Scripts and functions

— Scripts are m-files containing MATLAB statements
— Functions are like any other m-file, but they accept arguments
— Name the function file the same as the function name

my function.m

myotherfunction.m

» Try to code in matrix ways

=[1& 3 456700
117 mumik)

118 anz =

119 0 B

108 AlLD = AL8pTE:

ae (A, 2]

pear [ASUN, 1, =3izeik,2)}
136 anz =
137 w wo oW

126 AFROE(1,3) = A{1,3)FRSUN[1)

IETEEYI WS

» whos

* help

* lookfor

* clear/ clear x
e save

* load




