
Lecture 4: Linear filters

Tuesday, Sept 11

Many slides by (or adapted from)  D. Forsyth, Y. Boykov, L. 
Davis, W. Freeman, M. Hebert, D. Kreigman, P. Duygulu

Image neighborhoods

• Q: What happens if we reshuffle all pixels within the 
image?

• A:  Its histogram won’t change.                                     
Point-wise processing unaffected.

• Filters reflect spatial information

Image filtering

Modify the pixels in an image based on some
function of a local neighborhood of the pixels
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Some function

Linear filtering

• Replace each pixel with a linear combination of 
its neighbors.

• Convolution kernel: prescription for the linear 
combination

10 5 3

4 5 1

1 1 7
7*

0 0 0

0 0.5 0

0 1.0 0.5

=
kernel

Why filter images?

• Noise reduction
• Image enhancement
• Feature extraction

Convolution
signalkernel



Convolution

Shapiro & Stockman

Convolution example

Convolution example

(in 
both 
dims)

Filtering examples Filtering examples: Identity



Filtering examples Filtering examples: Blur

Filtering examples: Blur Filtering examples: Blur

Filtering examples Filtering examples: Shift



Filtering examples Filtering examples: sharpening

Filtering examples: sharpening Properties

• Shift invariant 
– G(Shift(f(x))=Shift(G(f(x))) 

• Linear
– G(k f(x))=kG(f(x))
– G(f+g) = G(f) + G(g)

Properties

• Associative: (f * g) * h = f * (g * h)

• Differentiation rule:

Filters as templates

• Applying filter = taking a 
dot-product between 
image and some vector

• Filtering the image is a 
set of dot products

• Insight 
– filters look like the 

effects they are 
intended to find

– filters find effects they 
look like
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Noise

Common types of noise:
• Salt and pepper noise: 

random occurrences of   
black and white pixels

• Impulse noise: random 
occurrences of white pixels

• Gaussian noise: 
variations in intensity 
drawn from a Gaussian 
normal distribution

Filtering is useful for 
noise reduction...

Gaussian noise
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Effect of 
sigma on 
Gaussian 
noise

Gaussian noise

• Issues
– allows noise values greater than maximum or 

less than zero
– good model for small standard deviations
– independence may not be justified
– does not model other sources of “noise”

Smoothing and noise

• Expect pixels to “be like” their neighbors
• Expect noise processes to be independent from 

pixel to pixel

• Smoothing suppresses noise, for appropriate 
noise models

• Impact of scale: more pixels involved in the 
image, more noise suppressed, but also more 
blurring

Mean filtering
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Mean kernel

• What’s the kernel for a 3x3 mean filter?
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Smoothing by Averaging

Smoothing with a Gaussian

• Averaging does not model 
defocused lens well

• Gaussian kernel weights 
pixels at its center much 
more strongly than its 
boundaries

Isotropic Gaussian

Reasonable model of a 
circularly symmetric blob

Smoothing with a Gaussian



Gaussian filters

• Gaussian function has infinite support, but 
discrete filters use finite kernels
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Smoothing and noise
Gaussian filters

• Remove “high-frequency” components 
from the image “low pass” filter

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, 

repeat, and get same result as larger-width 
kernel would have

– 2x with σ 1x with √2σ
• Separable kernel

Separability

• Isotropic Gaussians factorable into product 
of two 1D Gaussians

• Useful: can convolve all rows, then all 
columns

• Linear vs. quadratic time in mask size

Separability



Correlation of filter responses

• Filter responses are correlated over scales 
similar to scale of filter

• Filtered noise is sometimes useful
– looks like some natural textures

Edges and derivatives

• Edges correspond to fast changes

Edges and derivatives



Finite difference filters
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Image derivatives can be approximated 
with convolution.

Finite differences

• M = [-1 0 1]

Finite difference filters Finite differences

Which is derivative in the x direction?

Finite differences

Increasing noise ->
(zero mean additive Gaussian noise)

Strong response to fast change sensitive 
to noise

Smoothed derivatives

• Smooth before differentiation: assume that 
“meaningful” changes won’t be 
suppressed by smoothing, but noise will

• Two convolutions: smooth, then 
differentiate?



Smoothed derivatives Derivative of Gaussian filter
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Derivative of Gaussian filter

σ = 1 pixel σ = 3 pixels σ = 7 pixels

Derivatives in the x direction

Derivative of Gaussian filter

The apparent structures differ depending on 
Gaussian’s scale parameter.

σ = 1 pixel σ = 2 pixels

Smoothed derivatives: caveat
• Tradeoff between localization and smoothing



Typical mask properties
• Derivatives

– Opposite signs used to get high response in 
regions of high contrast

– Sum to 0 no response in constant regions
– High absolute value at points of high contrast

• Smoothing
– Values positive 
– Sum to 1 constant regions same as input
– Amount of smoothing proportional to mask size

Median filter

• Non-linear

• No new pixel values

• Removes spikes

Median filter

Salt and 
pepper 
noise

Median 
filtered

Median filter

Median filter Next

• More on edges, pyramids, and texture
• Pset 1 out tomorrow
• Reading: chapters 8 and 9


