Lecture 4: Linear filters

Tuesday, Sept 11

Many slides by (or adapted from) D. Forsyth, Y. Boykov, L. Davis, W. Freeman, M. Hebert, D. Kreigman, P. Duygulu

Image neighborhoods

· Q: What happens if we reshuffle all pixels within the image?

- A: Its histogram won't change. Point-wise processing unaffected.
- · Filters reflect spatial information

Image filtering

Modify the pixels in an image based on some function of a local neighborhood of the pixels

10	5	3
4	5	1
1	1	7

Linear filtering

- Replace each pixel with a linear combination of its neighbors.
- Convolution kernel: prescription for the linear combination

10	5	3
4	5	1
1	1	7

Why filter images?

- · Noise reduction
- · Image enhancement
- · Feature extraction

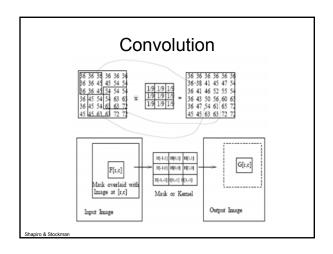
Convolution

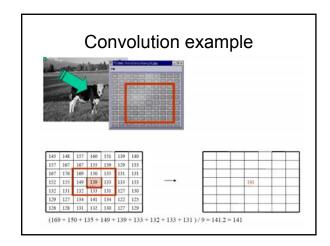
• 1D Formula:
$$h(x)*f(x) \stackrel{\text{kernel}}{=} \int_{u}^{\text{signal}} h(x-u)f(u)du$$

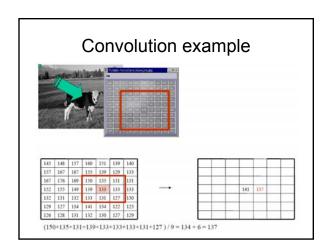
$$\stackrel{\underline{D}}{=} \sum_{i} h[x-i]f[i]$$
• 2D Formula:

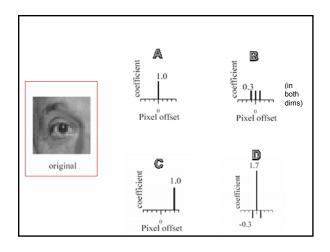
$$h(x,y) * f(x,y) \stackrel{C}{=} \int_{v} \int_{u} h(x-u,y-v) f(u,v) du dv$$

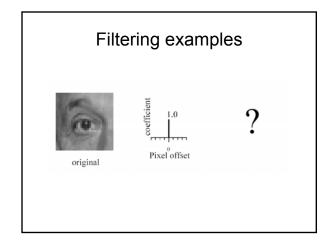
$$\stackrel{D}{=} \sum_{i} \sum_{j} h[x-i,y-j] f[i,j]$$

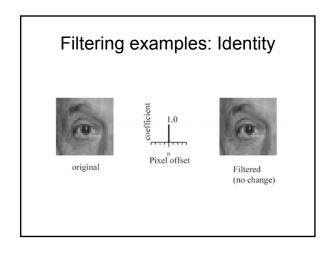


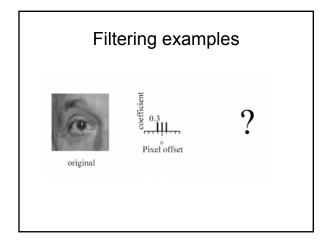


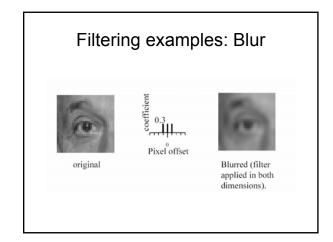


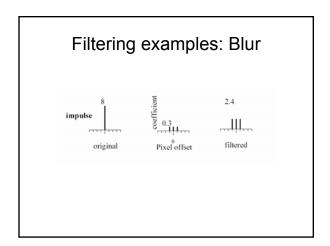


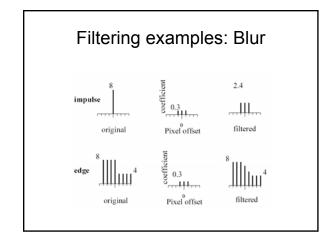


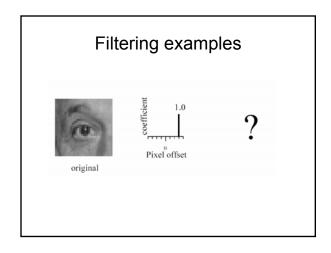


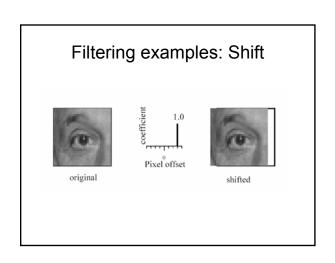


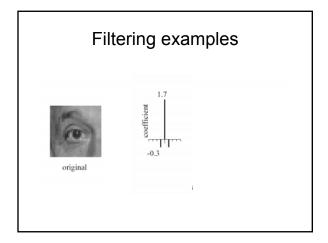


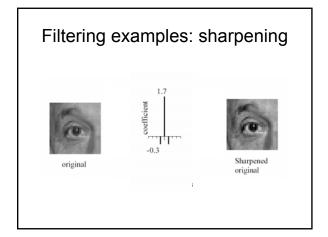












Filtering examples: sharpening

Properties

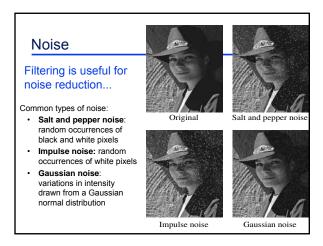
- · Shift invariant
 - G(Shift(f(x))=Shift(G(f(x)))
- Linear
 - G(k f(x))=kG(f(x))
 - G(f+g) = G(f) + G(g)

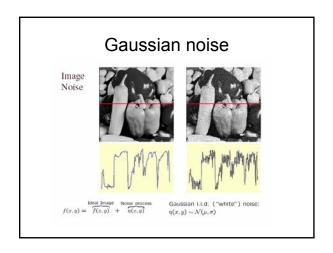
Properties

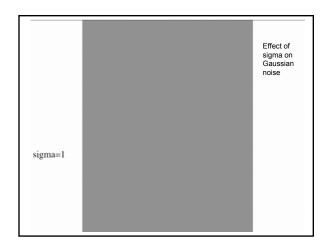
- Associative: (f * g) * h = f * (g * h)
- Differentiation rule: $\frac{\partial}{\partial x}(f*g) = \frac{\partial f}{\partial x}*g$

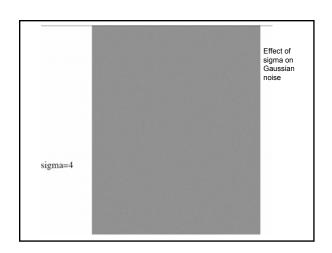
Filters as templates

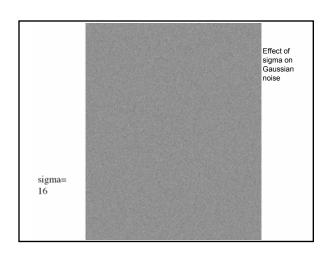
- Applying filter = taking a dot-product between image and some vector
- Filtering the image is a set of dot products
- Insight
 - filters look like the effects they are intended to find
 - filters find effects they look like

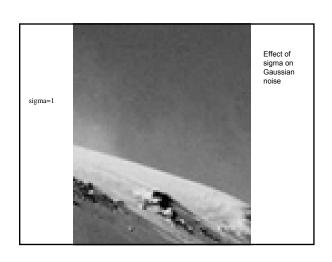


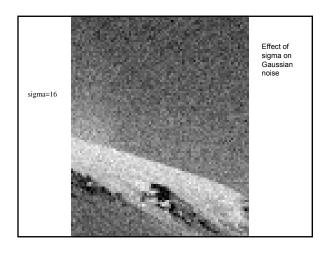










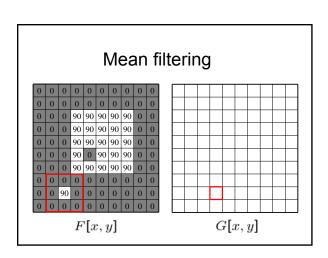


Gaussian noise

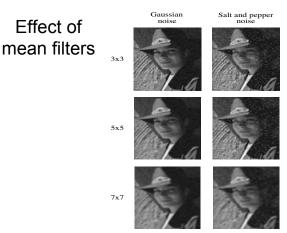
- Issues
 - allows noise values greater than maximum or less than zero
 - good model for small standard deviations
 - independence may not be justified
 - does not model other sources of "noise"

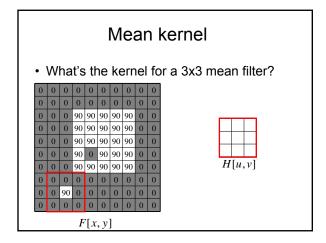
Smoothing and noise

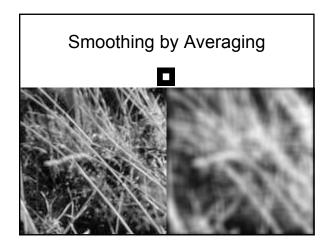
- Expect pixels to "be like" their neighbors
- Expect noise processes to be independent from pixel to pixel
 - Ţ
- Smoothing suppresses noise, for appropriate noise models
- Impact of scale: more pixels involved in the image, more noise suppressed, but also more blurring

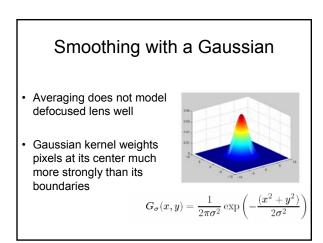


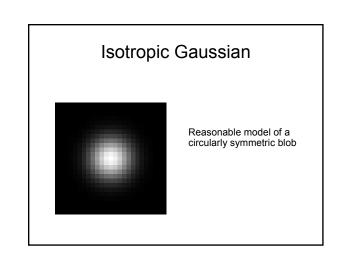
Mean filtering 0 10 20 30 30 30 20 10 0 20 40 60 60 60 40 20 0 90 90 90 90 90 0 0 0 90 90 90 90 0 0 0 30 60 90 90 90 60 30 0 0 0 90 90 90 90 0 0 0 0 30 50 80 80 90 60 30 0 0 0 90 0 90 90 0 0 0 30 50 80 80 90 60 30 0 0 0 90 90 90 90 90 0 0 0 20 30 50 50 60 40 20 10 20 30 30 30 30 20 10 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 10 10 10 0 0 0 0 0 G[x,y]F[x,y]

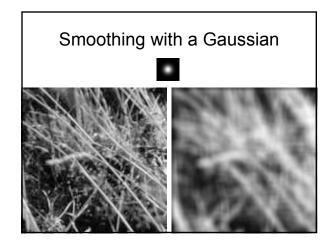


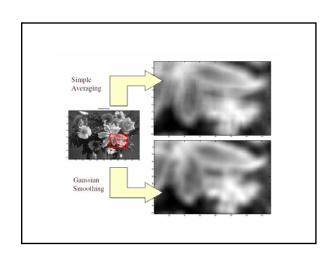




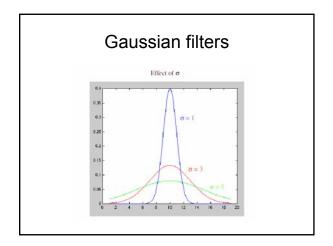


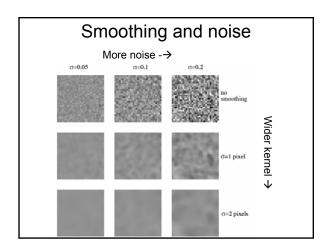






Gaussian filters • Gaussian function has infinite support, but discrete filters use finite kernels • $\frac{1}{16} \cdot \frac{1}{24} \cdot \frac{1}{21} \cdot \frac{1}{121} \cdot \frac{1}{16} \cdot \frac{1}$





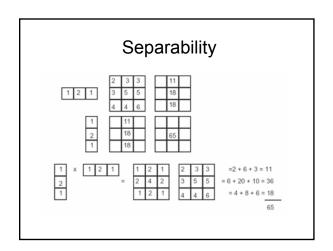
Gaussian filters

- Remove "high-frequency" components from the image → "low pass" filter
- · Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - -2x with $\sigma \Leftrightarrow 1x$ with $\sqrt{2}\sigma$
- Separable kernel

Separability

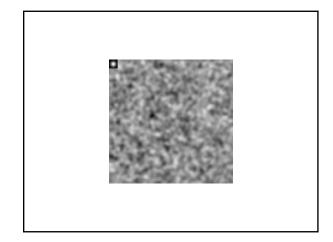
- Isotropic Gaussians factorable into product of two 1D Gaussians
- Useful: can convolve all rows, then all columns
- · Linear vs. quadratic time in mask size

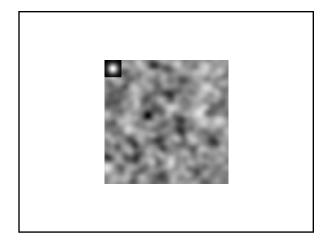
$$G_{\sigma} * f = g_{\sigma \rightarrow} * g_{\sigma \uparrow} * f$$

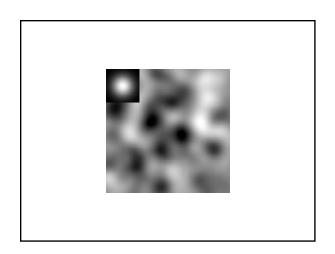


Correlation of filter responses

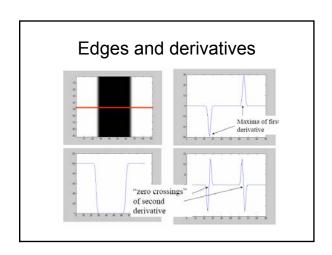
- Filter responses are correlated over scales similar to scale of filter
- Filtered noise is sometimes useful
 - looks like some natural textures







Edges and derivatives • Edges correspond to fast changes



Finite difference filters

Image derivatives can be approximated with convolution.

Finite differences

• M = [-1 0 1]

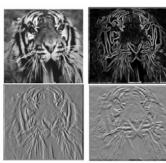
S_1		12	12	12	12	12	24	24	24	24	24
$S_1 \otimes$	M	0	0	0	0	12	12	0	0	0	0
(a) S_1 is an upward step edge											
S_2		24	24	24	24	24	12	12	12	12	12
$S_2 \otimes$	M	0	0	0	0	-12	-12	0	0	0	0
(b) S_2 is a downward step edge											
S_3		12	12	12	12	15	18	21	24	24	24
$S_3 \otimes$	M	0	0	0	3	6	6	6	3	0	0
(c) S ₃ is an upward ramp											

Finite difference filters

Prewitt:
$$M_z = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

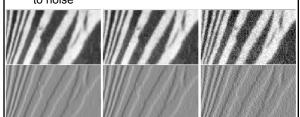
Finite differences



Which is derivative in the x direction?

Finite differences

Strong response to fast change → sensitive



Increasing noise -> (zero mean additive Gaussian noise)

Smoothed derivatives

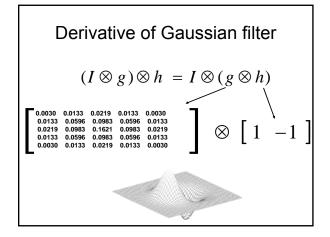
- Smooth before differentiation: assume that "meaningful" changes won't be suppressed by smoothing, but noise will
- · Two convolutions: smooth, then differentiate?

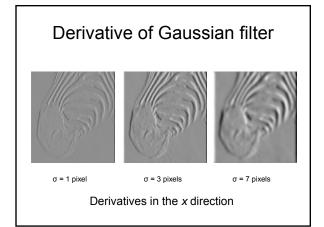
$$\frac{\partial}{\partial x}(f * g) = \frac{\partial f}{\partial x} * g$$

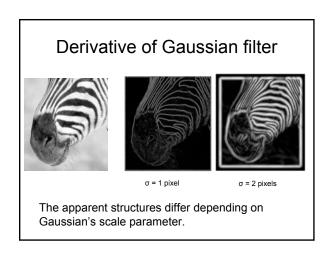
Smoothed derivatives

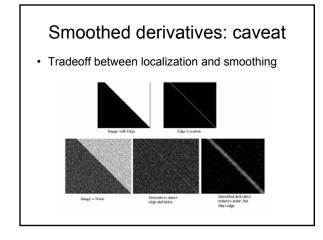
- Solution: First smooth the image by a Gaussian G_{σ} and then take derivatives: $\underbrace{\partial f}_{\sigma} \approx \underbrace{\partial (G_{\sigma} * f)}$
- Applying the differentiation property of the convolution:

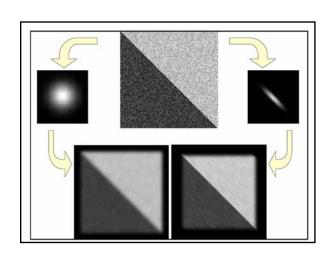
$$\frac{\partial f}{\partial x} \approx \frac{\partial G_{\sigma}}{\partial x} * f$$





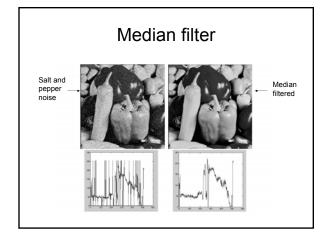


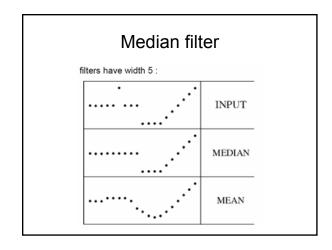




Typical mask properties

- · Derivatives
 - Opposite signs used to get high response in regions of high contrast
 - Sum to 0 → no response in constant regions
 - High absolute value at points of high contrast
- Smoothing
 - Values positive
 - Sum to 1 \rightarrow constant regions same as input
 - Amount of smoothing proportional to mask size





Median filter 10 times 3 X 3 median

Next

- · More on edges, pyramids, and texture
- Pset 1 out tomorrow
- Reading: chapters 8 and 9