Lecture 4: Linear filters

Tuesday, Sept 11

Many slides by (or adapted from) D. Forsyth, Y. Boykov, L.
Davis, W. Freeman, M. Hebert, D. Kreigman, P. Duygulu

Image neighborhoods

+ Q: What happens if we reshuffle all pixels within the
image?

» A: Its histogram won’t change.
Point-wise processing unaffected.

* Filters reflect spatial information

Image filtering

Modify the pixels in an image based on some
function of a local neighborhood of the pixels
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Linear filtering

» Replace each pixel with a linear combination of
its neighbors.

» Convolution kernel: prescription for the linear
combination

Why filter images?

* Noise reduction
* Image enhancement
» Feature extraction
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Convolution
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Convolution example
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Filtering examples
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Filtering examples
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Filtering examples: Blur
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Filtering examples: Blur
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Filtering examples: Blur
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Filtering examples: Shift
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Filtering examples Filtering examples: sharpening
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Filtering examples: sharpening Properties

 Shift invariant
— G(Shift(f(x))=Shift(G(f(x)))

e Linear
— G(k f(x))=kG(f(x))
— G(f+g) = G(f) + G(g)

Properties Filters as templates
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Noise

Filtering is useful for
noise reduction...

Common types of noise:

* Salt and pepper noise:
random occurrences of
black and white pixels

* Impulse noise: random
occurrences of white pixels

+ Gaussian noise:
variations in intensity
drawn from a Gaussian
normal distribution

Impulse noise Gaussian noise

Gaussian noise
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Gaussian noise

Effect of
sigma on
Gaussian
noise

* Issues

— allows noise values greater than maximum or
less than zero

—good model for small standard deviations
— independence may not be justified
— does not model other sources of “noise”

sigma=16

Smoothing and noise Mean filtering

» Expect pixels to “be like” their neighbors
» Expect noise processes to be independent from
pixel to pixel ﬁ

» Smoothing suppresses noise, for appropriate
noise models

+ Impact of scale: more pixels involved in the
image, more noise suppressed, but also more
blurring
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Mean kernel

* What's the kernel for a 3x3 mean filter?
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Smoothing with a Gaussian

* Averaging does not model
defocused lens well

» Gaussian kernel weights
pixels at its center much
more strongly than its
boundaries

Smoothing by Averaging

Isotropic Gaussian

Reasonable model of a
circularly symmetric blob

Smoothing with a Gaussian

Simple
Averaging

Gaussian
Smoothing




Gaussian filters

+ Gaussian function has infinite support, but
discrete filters use finite kernels

Gaussian filters
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Gaussian filters

* Remove “high-frequency” components
from the image - “low pass” filter
+ Convolution with self is another Gaussian

— So can smooth with small-width kernel,
repeat, and get same result as larger-width
kernel would have

—2x with o < 1x with V20

» Separable kernel

Separability

* Isotropic Gaussians factorable into product
of two 1D Gaussians
« Useful: can convolve all rows, then all

columns
* Linear vs. quadratic time in mask size

Go*f=85.%81"f

Separability
A EE 1
|1|2|1| ss]s 18
4 |4 |8 18
[ 1] 1
18 &
n 18
(1] = ]2 ]1] ]2 ] FHEE 2+6+3=11
2 = |z ]a]2] [2]5]5] =6+20+10=36
1] 1]2 |1 4 lals =4+8+6=18

65




Correlation of filter responses

« Filter responses are correlated over scales
similar to scale of filter

* Filtered noise is sometimes useful
—looks like some natural textures

Edges and derivatives Edges and derivatives
« Edges correspond to fast changes ‘B 1
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Finite difference filters

Image derivatives can be approximated
with convolution.

Finite differences
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Finite difference filters
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Finite differences

Which is derivative in the x direction?

Finite differences

Strong response to fast change - sensitive
to noise
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Increasing noise ->
(zero mean additive Gaussian noise)

Smoothed derivatives

» Smooth before differentiation: assume that
“meaningful” changes won’t be
suppressed by smoothing, but noise will

« Two convolutions: smooth, then
differentiate?
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Smoothed derivatives

+ Solution: First smooth the image by a Gaussian G, and then take
derivatives: of - a{(-;a £ f)
dx dx

+ Applying the differentiation property of the convelution:
o 3G, .
dx  ox

Derivative of Gaussian filter
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Derivative of Gaussian filter

o =1 pixel o = 3 pixels o =7 pixels

Derivatives in the x direction

Derivative of Gaussian filter

o =1 pixel o = 2 pixels

The apparent structures differ depending on
Gaussian’s scale parameter.

Smoothed derivatives: caveat

+ Tradeoff between localization and smoothing




Typical mask properties

» Derivatives

— Opposite signs used to get high response in
regions of high contrast

— Sum to 0 - no response in constant regions
— High absolute value at points of high contrast
» Smoothing
— Values positive
— Sum to 1 - constant regions same as input
— Amount of smoothing proportional to mask size

Median filter
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Median filter

filters have width 5 :
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Median filter

10 times 3 X 3 median

Next

* More on edges, pyramids, and texture
* Pset 1 out tomorrow
» Reading: chapters 8 and 9




