Lecture 4: Linear filters

Tuesday, Sept 11

Many slides by (or adapted from) D. Forsyth, Y. Boykov, L. Davis, W. Freeman, M. Hebert, D. Kreigman, P. Duygulu

Image neighborhoods

• Q: What happens if we reshuffle all pixels within the image?

- A: Its histogram won't change. Point-wise processing unaffected.
- Filters reflect spatial information

Why filter images?

- Noise reduction
- Image enhancement
- Feature extraction

Filtering examples: sharpening

before

after

- Shift invariant
 - G(Shift(f(x))=Shift(G(f(x)))
- Linear

$$- G(k f(x))=kG(f(x))$$

- G(f+g) = G(f) + G(g)

Properties

- Associative: (f * g) * h = f * (g * h)
- Differentiation rule: $\frac{\partial}{\partial x}(f * g) = \frac{\partial f}{\partial x} * g$

Noise

Filtering is useful for noise reduction...

Common types of noise:

- Salt and pepper noise: • random occurrences of black and white pixels
- Impulse noise: random • occurrences of white pixels
- Gaussian noise: • variations in intensity drawn from a Gaussian normal distribution

Original

Salt and pepper noise

Impulse noise

Gaussian noise

Gaussian noise

- Issues
 - allows noise values greater than maximum or less than zero
 - good model for small standard deviations
 - independence may not be justified
 - does not model other sources of "noise"

Smoothing and noise

- Expect pixels to "be like" their neighbors
- Expect noise processes to be independent from pixel to pixel
- Smoothing suppresses noise, for appropriate noise models
- Impact of scale: more pixels involved in the image, more noise suppressed, but also more blurring

					Ν	/ (ea	an	n f	ïlt	eı	rir	ng							
0	0	0	0	0	0	0	0	0	0											
0	0	0	0	0	0	0	0	0	0			0	10	20	30	30	30	20	10	
0	0	0	90	90	90	90	90	0	0			0	20	40	60	60	60	40	20	
0	0	0	90	90	90	90	90	0	0			0	30	60	90	90	90	60	30	
0	0	0	90	90	90	90	90	0	0			0	30	50	80	80	90	60	30	
0	0	0	90	0	90	90	90	0	0			0	30	50	80	80	90	60	30	
0	0	0	90	90	90	90	90	0	0			0	20	30	50	50	60	40	20	
0	0	0	0	0	0	0	0	0	0			10	20	30	30	30	30	20	10	
0	0	90	0	0	0	0	0	0	0			10	10	10	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0											
F[x, y]											G[x, y]									

Effect of mean filters

3x3

Gaussian noise

Salt and pepper noise

7x7

Isotropic Gaussian

Reasonable model of a circularly symmetric blob

Gaussian filters

- Remove "high-frequency" components from the image → "low pass" filter
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - 2x with $\sigma \Leftrightarrow$ 1x with $\sqrt{2\sigma}$
- Separable kernel

Separability

- Isotropic Gaussians factorable into product of two 1D Gaussians
- Useful: can convolve all rows, then all columns
- Linear vs. quadratic time in mask size

$$G_{\sigma} * f = g_{\sigma \to} * g_{\sigma \uparrow} * f$$

Correlation of filter responses

- Filter responses are correlated over scales similar to scale of filter
- Filtered noise is sometimes useful
 - looks like some natural textures

Smooth derivatives Smooth before differentiation: assume that "meaningful" changes won't be suppressed by smoothing, but noise will Two convolutions: smooth, then differentiate?

$$\frac{\partial}{\partial x}(f \ast g) = \frac{\partial f}{\partial x} \ast g$$

The apparent structures differ depending on Gaussian's scale parameter.

Typical mask properties

- Derivatives
 - Opposite signs used to get high response in regions of high contrast
 - Sum to 0 \rightarrow no response in constant regions
 - High absolute value at points of high contrast
- Smoothing
 - Values positive
 - Sum to 1 \rightarrow constant regions same as input
 - Amount of smoothing proportional to mask size

Next

- More on edges, pyramids, and texture
- Pset 1 out tomorrow
- Reading: chapters 8 and 9