Lecture 5: Edges, Corners, Sampling, Pyramids

Thursday, Sept 13

With some slides by S. Seitz, D. Frolova, and D. Simakov

Filters as templates

- Applying filter = taking a dot-product between image and some vector
- Filtering the image is a set of dot products
- · Insight
 - filters look like the effects they are intended to find
 - filters find effects they look like

Normalized cross correlation

Best match

- Normalized correlation: normalize for image region brightness
- Windowed correlation search: inexpensive way to find a fixed scale pattern
- (Convolution = correlation if filter is symmetric)

Filters and scenes

Filters and scenes

- · Scenes have holistic qualities
- Can represent scene categories with global texture
- Use *Steerable* filters, windowed for some limited spatial information
- Model likelihood of filter responses given scene category as mixture of Gaussians, (and incorporate some temporal info...)

[Torralba & Oliva, 2003] [Torralba, Murphy, Freeman, and Rubin, ICCV 2003]

Steerable filters

 Convolution linear -- synthesize a filter of arbitrary orientation as a linear combination of "basis filters"

$$\begin{array}{lll} R_1^{0^o} &=& G_1^{0} * I \\ R_2^{90^o} &=& G_1^{90} * I \\ & & & & \\ then & & & \\ R_1^{\theta} &=& \cos(\theta) R_1^{0^o} + \sin(\theta) R_1^{90^o} \end{array}$$

 Interpolated filter responses more efficient than explicit filter at arbitrary orientation

[Freeman & Adelson, The Design and Use of Steerable Filters, PAMI 1991]

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial s}\right]$$

The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

The *edge strength* is given by the gradient magnitude
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Hysteresis Thresholding

Reduces the probability of false contours and fragmented edges

Given result of non-maximum suppression: For all edge points that remain,

- locate next unvisited pixel where intensity > $t_{\rm high}$
- start from that point, follow chains along edge and add points where intensity < $t_{\rm low}$

Edge detection by subtraction original

Learning good boundaries

- Use ground truth (human-labeled) boundaries in natural images to learn good features
- Supervised learning to optimize cue integration, filter scales, select feature types

Work by D. Martin and C. Fowlkes and D. Tal and J. Malik, Berkeley Segmentation Benchmark, 2001

Matching with Features

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Matching with Features

- Problem 1:
 - Detect the same point independently in both images

no chance to match!

We need a repeatable detector

Matching with Features

- (Problem 2:
 - For each point correctly recognize the corresponding one)

We need a reliable and distinctive descriptor

More on this aspect later!

Corner detection as an interest operator

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give a *large change* in intensity

Corner detection as an interest operator

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988

Corner Detection

M is a 2×2 matrix computed from image derivatives:

Gradient with respect to x, times gradient with respect to y

Sum over image region – area we are checking for corner

Harris Corner Detector

- The Algorithm:
 - Find points with large corner response function R (R > threshold)
 - Take the points of local maxima of ${\it R}$

How to prevent aliasing?

- Sample more ...
- Smooth suppress high frequencies before sampling

Image pyramids

- Big bars (resp. spots, hands, etc.) and little bars are both interesting
- Inefficient to detect big bars with big filters
- Alternative:
 - Apply filters of fixed size to images of different sizes

Image pyramids

- · Useful for
 - Coarse to fine matching, iterative computation; e.g. optical flow
 - Feature association across scales to find reliable features
 - -Searching over scale

