Lecture 5: Edges, Corners,
Sampling, Pyramids

Thursday, Sept 13




Filters as templates

+ Applying filter = taking a * Insight
dot-product between
image and some vector

+ Filtering the image is a
set of dot products

— filters look like the
effects they are
intended to find

— filters find effects they
look like




Normalized cross correlation

Best match

Template
* Normalized correlation: normalize for image
region brightness

* Windowed correlation search: inexpensive way
to find a fixed scale pattern

e (Convolution = correlation if filter is symmetric)




Filters and scenes




Filters and scenes

Scenes have holistic qualities

Can represent scene categories with
global texture

Use Steerable filters, windowed for some
limited spatial information

Model likelihood of filter responses given
scene category as mixture of Gaussians,
(and incorporate some temporal info...)

[Torralba & Oliva, 2003]
[Torralba, Murphy, Freeman, and Rubin, ICCV 2003]




Steerable filters

e Convolution linear -- synthesize a filter of
arbitrary orientation as a linear
combination of “basis filters”

H[l_lu — ("'[l_l - IJ
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then

R = cos()RY" + sin(6) R}

* Interpolated filter responses more efficient
than explicit filter at arbitrary orientation

[Freeman & Adelson, The Design and Use of Steerable Filters, PAMI 1991]




Steerable filters

Freeman &
Adelson, 1991
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Basis filters for derivative of Gaussian




[Torralba, Murphy, Freeman, and Rubin, ICCV 2003]
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Figure 7. Average of color (top) and texture (bottom) sig-
natures of offices and corridors for two different buildings.
While the algorithm uses a richer representation than sim-
ply the mean mmages shows here. these averages show that
the overall color of offices/corridors varies significantly be-
tween the two buildings, whereas the texture features are

more stable.

[Torralba, Murphy, Freeman, and Rubin, ICCV 2003]




Contextual priors

» Use scene recognition - predict objects present

» For object(s) likely to be present, predict locations
based on similarity to previous images with the same
place and that object

building (.99) street (.93) tree (.87) sky (.84) car (.81) streetlight (.72) person (.66)
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Specific place

(black=right, red=wrong)

[Torralba, Murphy, Freeman, and Rubin, ICCV 2003]
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Blue solid circle:
recognition with
temporal info

Black hollow circle:
instantaneous
recognition using global
feature only

Cross: true location




Image gradient

The gradient of an image:
— [9f 9f
V= [8:1: ay]

The gradient points in the direction of most rapid change in intensity

v/ =[50 T L. v =139
vi=[o.3] =

The gradient direction (orientation of edge normal) is given by:
_ -1 (9f ,0f
f = tan (8—y/ %)

The edge strength is given by the gradient magnitude

1Vl =/ (GD)° + &)

Slide credit S. Seitz




Effects of noise

Consider a single row or column of the image
* Plotting intensity as a function of position gives a signal
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Where is the edge?

Slide credit S. Seitz




Solution: smooth first

Sigma = 50
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Derivative theorem of convolution

se(hx [) = (g5h) = f
This saves us one operation:

Sigma = 50
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Slide credit S. Seitz




Laplacian of Gaussian

2
Consider %(ﬁ * f)
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2D edge detection filters
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Laplacian of Gaussian

Gaussian derivative of Gaussian
1 _u2+v2 8 5 (
ho(u,v) = e 202 ho(u,v) V<he(u,v)

27102 ox

e V-<isthe Laplacian operator:

92 52
V2f = 89::; + 6y£

Slide credit S. Seitz




The Canny edge detector

original image (Lena)




The Canny edge detector

norm of the gradient




The Canny edge detector

thresholding




Non-maximum suppression
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Check if pixel is local maximum along gradient direction,
select single max across width of the edge
* requires checking interpolated pixels p and r

Slide credit S. Seitz




The Canny edge detector

thinning
(non-maximum suppression)




Predicting the next edge point

Assume the marked

e ® e e point is an edge point.
Then we construct the
r tangent to the edge
® ® o curve (which is normal
: to the gradient at that
Gradlen% point) and use this to
B predict the next points
L ® o O (here either r or s).

(Forsyth & Ponce)




Hysteresis Thresholding

Reduces the probability of false contours
and fragmented edges

Given result of non-maximum suppression:
For all edge points that remain,
- locate next unvisited pixel where
intensity > t,,,
- start from that point, follow chains

along edge and add points where
intensity < t,,,




Edge detection by subtraction

original




Edge detection by subtraction

smoothed (5x5 Gaussian)




Edge detection by subtraction

Why does
this work?

smoothed — original
(scaled by 4, offset +128)




Gaussian - image filter
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Causes of edges

e Depth discontinuity

e Surface orientation
discontinuity

o Reflectance
discontinuity (i.e.,
change in surface
material properties)

e Illumination
discontinuity (e.g.,
shadow) If the goal is image

understanding, what do we

want from an edge detector?

Adapted from C. Rasmussen




Learning good boundaries

e Use ground truth (human-labeled)
boundaries in natural images to learn good
features

« Supervised learning to optimize cue
Integration, filter scales, select feature
types

Work by D. Martin and C. Fowlkes and D. Tal and J. Malik,
Berkeley Segmentation Benchmark, 2001




Human-
marked
segment
boundaries

AL

[D. Martin et al. PAMI 2004]




What features are responsible
for perceived edges”?
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Feature profiles (oriented energy, brightness, color, and texture
gradients) along the patch’s horizontal diameter

[D. Martin et al. PAMI 2004]




What features are responsible
for perceived edges?




Learning good boundaries
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Original

Boundary detection Human-labeled

Berkeley Segmentation Database, D. Martin and C. Fowlkes and D. Tal and J. Malik
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Edge detection and corners

« Partial derivative estimates in x and y fail to
capture corners

ah

Why do we care about corners?




Case study: panorama stitching

(b) Matier final stitch

[Brown, Szeliski, and Winder, CVPR 2005]




How do we build panorama?

* We need to match (align) images

[Slide credit: Darya Frolova and Denis Simakov]




Matching with Features

» Detect feature points in both images




Matching with Features

» Detect feature points in both images

* Find corresponding pairs




Matching with Features

» Detect feature points in both images

* Find corresponding pairs

» Use these pairs to align images




Matching with Features

 Problem 1:

— Detect the same point independently in both
Images

et A e -
e B L
o e

no chance to match!

We need a repeatable detector




Matching with Features

e (Problem 2:

— For each point correctly recognize the
corresponding one)

We need a reliable and distinctive descriptor

More on this aspect later!




Corner detection as an interest operator

 We should easily recognize the point by
looking through a small window

« Shifting a window in any direction should
give a large change in intensity

V\\




Corner detection as an interest operator

N

“flat” region:
no change in
all directions
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“edge”:
no change along
the edge direction

“corner’:
significant change
in all directions

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988




Corner Detection

M is a 2x2 matrix computed from image derivatives:

Gradient with
respect to x,
times gradient
with respect to y

T

Sum over image region — area
we are checking for corner




Corner Detection

Eigenvectors of M: encode edge directions

Eigenvalues of M: encode edge strength

A1, A, — eigenvalues of M
direction of the

fastest change

direction of the
slowest change




Corner Detection

-
Classification of A, | “Edge”

image points using Ay >>)\1 /@ “Corner”

eigenvalues of M: A, and A, are large,

E increases in all
directions

A, and A, are small;

E is almost constant :\,> “Flat”

in all directions region




Harris Corner Detector

Measure of corner response.
N

R =detM —k (trace M )2

Avoid computing
> eigenvalues

detM =44, themselves.
traceM =4, + 4,

J

(k — empirical constant, k = 0.04-0.06)




Harris Corner Detector

A “Corner”
* R depends only on

eigenvalues of M
* R is large for a corner

* R is negative with large
magnitude for an edge

* |IR| is small for a flat

region “Elat”

|R| small




Harris Corner Detector

* The Algorithm:

— Find points with large corner response
function R (R > threshold)

— Take the points of local maxima of R




Harris Detector: Workflow




Harris Detector: Workflow

Compute corner response R




Harris Detector: Workflow
Find points with large corner response: R>threshold




Harris Detector: Workflow
Take only the points of local maxima of R




Harris Detector: Workflow




Harris Detector: Some Properties

e Rotation invariance

Ellipse rotates but its shape (i.e.
eigenvalues) remains the same

Corner response R is invariant to image rotation




Harris Detector: Some Properties

* Not invariant to image scale!

A T mm) B

All points will be Corner !
classified as edges

More on interest operators/descriptors with invariance properties later.







This image is too big to
fit on the screen. How
can we reduce it?

How to generate a half-
sized version?




Image sub-sampling

Throw away every other row and

column to create a 1/2 size image

- called image sub-sampling
Slide credit: S. Seitz




Image sub-sampling

o -

1/2 1/4 (2x zoom) 1/8 (4x zoom)




Sampling

e Continuous function - discrete set of
values




Undersampling

e |Information lost
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Figure credit: S. Marschner




Undersampling

» Looks just like lower frequency signal!
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Undersampling

» Looks like higher frequency signal!

AAANAANAANN AN

TRATRVATATRAATATRTATA

Aliasing: higher frequency information
can appear as lower frequency
Information




Undersampling

Good sampling

Bad sampling




Aliasing

XD N T R RS
gimmemnss

Disintegrating textures




Aliasing

Input signal:

Matlab output:
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x = 0:.05:5; imagesc(sin((2.”x).*x))
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Not enough samples




Aliasing in video
Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

If camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDIROE

frame 0 frame 1 frame 2 frame 3 frame 4
0 ] ] .
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide credit: S. Seitz




Image sub-sampling

o -

1/2 1/4 (2x zoom) 1/8 (4x zoom)




How to prevent aliasing?

e Sample more ...

e Smooth — suppress high frequencies
before sampling




Gaussian pre-filtering

Gaussian 1/2

Solution: smooth the image, then subsample




Subsampling with Gaussian pre-filtering

Gaussian 1/2

Solution: smooth the image, then subsample




_Compare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)




Image pyramids

» Big bars (resp. spots, hands, etc.) and little
bars are both interesting

* Inefficient to detect big bars with big filters

e Alternative:

— Apply filters of fixed size to images of
different sizes




Image pyramids

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2* images (assuming N=2%)

level k(=1 pi:-wh/

level k-1

level k-2

level O (= original image)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]




Gaussian image pyramids

Low resolution m 04 = (G * gaussian) v2
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High resolution

[rani & Basri
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Image pyramids

e Useful for

— Coarse to fine matching, iterative
computation; e.g. optical flow

— Feature association across scales to
find reliable features

— Searching over scale




Image pyramids:

multi-scale search

TARGET
al expanded scales

e
IMAGE ) | & |
lixed scale hall S I

RESULTS

IMAGE
at reduced scales
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TARGET !
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BESULTS

[Adelson et al., 1984]
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