Lecture 5: Edges, Corners, Sampling, Pyramids

Thursday, Sept 13
Filters as templates

- Applying filter = taking a dot-product between image and some vector
- Filtering the image is a set of dot products

- Insight
 - filters look like the effects they are intended to find
 - filters find effects they look like
Normalized cross correlation

- Normalized correlation: normalize for image region brightness
- Windowed correlation search: inexpensive way to find a fixed scale pattern
- (Convolution = correlation if filter is symmetric)
Filters and scenes
Filters and scenes

- Scenes have holistic qualities
- Can represent scene categories with global texture
- Use *Steerable* filters, windowed for some limited spatial information
- Model likelihood of filter responses given scene category as mixture of Gaussians, (and incorporate some temporal info...)

[Torralba & Oliva, 2003]
[Torralba, Murphy, Freeman, and Rubin, ICCV 2003]
Steerable filters

• Convolution linear -- synthesize a filter of arbitrary orientation as a linear combination of “basis filters”

\[
\begin{align*}
R_1^{0^\circ} &= G_1^{0^\circ} \ast I \\
R_1^{90^\circ} &= G_1^{90^\circ} \ast I
\end{align*}
\]

then

\[
R_1^\theta = \cos(\theta)R_1^{0^\circ} + \sin(\theta)R_1^{90^\circ}.
\]

• Interpolated filter responses more efficient than explicit filter at arbitrary orientation

[Freeman & Adelson, The Design and Use of Steerable Filters, PAMI 1991]
Steerable filters

Freeman & Adelson, 1991

$G_1^{0^\circ}$
$G_1^{90^\circ}$
Basis filters for derivative of Gaussian
Probability of the scene given global features

\[P(Q_t \mid v_{I,t}^G) \]

\[P(C_t \mid v_{I,t}^G) \]
Figure 7. Average of color (top) and texture (bottom) signatures of offices and corridors for two different buildings. While the algorithm uses a richer representation than simply the mean images shows here, these averages show that the overall color of offices/corridors varies significantly between the two buildings, whereas the texture features are more stable.

[Torralba, Murphy, Freeman, and Rubin, ICCV 2003]
Contextual priors

- Use scene recognition → predict objects present
- For object(s) likely to be present, predict locations based on similarity to previous images with the same place and that object
Scene category

Specific place

\((black=\text{right}, \ red=\text{wrong}) \)
Blue solid circle: recognition with temporal info

Black hollow circle: instantaneous recognition using global feature only

Cross: true location
The gradient of an image:

\[
\nabla f = \begin{bmatrix}
\frac{\partial f}{\partial x}, \\
\frac{\partial f}{\partial y}
\end{bmatrix}
\]

The gradient points in the direction of most rapid change in intensity.

The gradient direction (orientation of edge normal) is given by:

\[
\theta = \tan^{-1}\left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}\right)
\]

The edge strength is given by the gradient magnitude:

\[
\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}
\]
Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

\[f(x) \]

\[\frac{d}{dx} f(x) \]

Where is the edge?

Slide credit S. Seitz
Solution: smooth first

Where is the edge? Look for peaks in \(\frac{\partial}{\partial x}(h \ast f) \)
Derivative theorem of convolution

\[\frac{\partial}{\partial x} (h \ast f) = (\frac{\partial}{\partial x} h) \ast f \]

This saves us one operation:
Laplacian of Gaussian

Consider \(\frac{\partial^2}{\partial x^2}(h \ast f) \)

Where is the edge? Zero-crossings of bottom graph
2D edge detection filters

- \(\nabla^2 \) is the **Laplacian** operator:

\[
\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}
\]
The Canny edge detector

original image (Lena)
The Canny edge detector

norm of the gradient
The Canny edge detector

thresholding
Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

- requires checking interpolated pixels p and r

Slide credit S. Seitz
The Canny edge detector

thinning
(non-maximum suppression)
Predicting the next edge point

Assume the marked point is an edge point. Then we construct the tangent to the edge curve (which is normal to the gradient at that point) and use this to predict the next points (here either r or s).

(Forsyth & Ponce)
Hysteresis Thresholding

Reduces the probability of false contours and fragmented edges

Given result of non-maximum suppression:
For all edge points that remain,
- locate next unvisited pixel where intensity > t_{high}
- start from that point, follow chains along edge and add points where intensity < t_{low}
Edge detection by subtraction
Edge detection by subtraction

smoothed (5x5 Gaussian)
Edge detection by subtraction

Why does this work?

smoothed – original
(scaled by 4, offset +128)
Gaussian - image filter

Gaussian

delta function

Laplacian of Gaussian
Causes of edges

- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

If the goal is image understanding, what do we want from an edge detector?
Learning good boundaries

• Use ground truth (human-labeled) boundaries in natural images to learn good features
• Supervised learning to optimize cue integration, filter scales, select feature types

Human-marked segment boundaries
What features are responsible for perceived edges?

Feature profiles (oriented energy, brightness, color, and texture gradients) along the patch’s horizontal diameter

[D. Martin et al. PAMI 2004]
What features are responsible for perceived edges?
Learning good boundaries

[D. Martin et al. PAMI 2004]
Berkeley Segmentation Database, D. Martin and C. Fowlkes and D. Tal and J. Malik
Edge detection and corners

- Partial derivative estimates in x and y fail to capture corners

Why do we care about corners?
Case study: panorama stitching

[Brown, Szeliski, and Winder, CVPR 2005]
How do we build panorama?

• We need to match (align) images
Matching with Features

- Detect feature points in both images
Matching with Features

- Detect feature points in both images
- Find corresponding pairs
Matching with Features

• Detect feature points in both images
• Find corresponding pairs
• Use these pairs to align images
Matching with Features

• Problem 1:
 – Detect the same point independently in both images

We need a repeatable detector
Matching with Features

• (Problem 2:
 – For each point correctly recognize the corresponding one)

We need a reliable and distinctive descriptor

More on this aspect later!
Corner detection as an interest operator

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give a *large change* in intensity
Corner detection as an interest operator

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Corner Detection

\[M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

Gradient with respect to \(x \), times gradient with respect to \(y \)

Sum over image region – area we are checking for corner
Corner Detection

Eigenvectors of M: encode edge directions

Eigenvalues of M: encode edge strength

λ_1, λ_2 – eigenvalues of M
Corner Detection

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions.
- λ_1 and λ_2 are small; E is almost constant in all directions.
- $\lambda_1 > > \lambda_2$; “Edge”
- $\lambda_2 > > \lambda_1$; “Flat” region
- $\lambda_1 > > \lambda_2$; “Edge”

λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions.
Harris Corner Detector

Measure of corner response:

\[R = \det M - k \left(\text{trace } M \right)^2 \]

Avoid computing eigenvalues themselves.

\[\det M = \lambda_1 \lambda_2 \]
\[\text{trace } M = \lambda_1 + \lambda_2 \]

\((k - \text{empirical constant, } k = 0.04-0.06) \)
Harris Corner Detector

- R depends only on eigenvalues of M
- R is large for a corner
- R is negative with large magnitude for an edge
- $|R|$ is small for a flat region

\[
\begin{align*}
\lambda_1 & \quad \text{“Corner”} \\
\lambda_2 & \quad \text{“Edge”} \\
\text{“Flat”} & \quad |R| \text{ small}
\end{align*}
\]
Harris Corner Detector

• The Algorithm:
 – Find points with large corner response function R ($R >$ threshold)
 – Take the points of local maxima of R
Harris Detector: Workflow

Compute corner response R
Harris Detector: Workflow

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: Workflow
Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector: Some Properties

• Not invariant to *image scale*!

All points will be classified as *edges*

Corner!

More on interest operators/descriptors with invariance properties later.
This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?
Image sub-sampling

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*
Image sub-sampling

1/2 1/4 (2x zoom) 1/8 (4x zoom)
Sampling

- Continuous function \rightarrow discrete set of values
Undersampling

- Information lost

Figure credit: S. Marschner
Undersampling

- Looks just like lower frequency signal!
Undersampling

• Looks like higher frequency signal!

Aliasing: higher frequency information can appear as lower frequency information
Unersampling

Good sampling

Bad sampling
Aliasing

Disintegrating textures
Aliasing

Input signal:

Matlab output:

```matlab
x = 0:.05:5; imagesc(sin((2.^x).*x))
```

Not enough samples
Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what’s happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)
Image sub-sampling

1/2

1/4 (2x zoom)

1/8 (4x zoom)
How to prevent aliasing?

• Sample more …
• Smooth – suppress high frequencies before sampling
Gaussian pre-filtering

Gaussian 1/2

Solution: smooth the image, then subsample
Subsampling with Gaussian pre-filtering

Solution: smooth the image, *then* subsample
Compare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)
Image pyramids

- Big bars (resp. spots, hands, etc.) and little bars are both interesting
- Inefficient to detect big bars with big filters
- Alternative:
 - Apply filters of fixed size to images of different sizes
Image pyramids

- Known as a **Gaussian Pyramid** [Burt and Adelson, 1983]

Idea: Represent $N \times N$ image as a “pyramid” of $1 \times 1, 2 \times 2, 4 \times 4, \ldots, 2^k \times 2^k$ images (assuming $N=2^k$)
Gaussian image pyramids

\[G_4 = (G_3 \ast \text{gaussian}) \downarrow 2 \]
\[G_3 = (G_2 \ast \text{gaussian}) \downarrow 2 \]
\[G_2 = (G_1 \ast \text{gaussian}) \downarrow 2 \]
\[G_1 = (G_0 \ast \text{gaussian}) \downarrow 2 \]
\[G_0 = \text{Input} \]

Irani & Basri
Image pyramids

• Useful for
 – Coarse to fine matching, iterative computation; e.g. optical flow
 – Feature association across scales to find reliable features
 – Searching over scale
Image pyramids: multi-scale search

[Adelson et al., 1984]
Image pyramids: multi-scale search

Figure from Rowley et al. 1998