Lecture 7: Segmentation

Thursday, Sept 20
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Outline

* Why segmentation?
» Gestalt properties, fun illusions and/or
revealing examples
* Clustering
— Hierarchical
— K-means
— Mean Shift

— Graph-theoretic
« Normalized cuts

Grouping

Segmentation / Grouping / Perceptual
organization: gather features that belong
together

Need an intermediate representation, compact
description of key image (video, motion,...) parts
Top down vs. bottom up

Hard to measure success

(Fitting: associate a model with observed
features)
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[Figure by J. Shi] Find shot boundaries
Determine image regions
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Object-level grbuping

Gestalt

Gestalt: whole or group
Whole is greater than sum of its parts

Psychologists identified series of factors
that predispose set of elements to be
grouped

Interesting observations/explanations, but
not necessarily useful for algorithm
building




Some Gestalt factors

Parallelism

Muller-Lyer illusion

 http://www.michaelbach.de/ot/sze _muelue

/index.html

Gestalt principle: grouping key to visual perception.

In

Vision, D. Marr, 1982

Subjective contours
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Interesting tendency to explain by occlusion




In Vision, D. Marr, 1982 from J. L. Marroguin, *Human visual

Outline

* Why segmentation?
» Gestalt properties, fun illusions and/or
revealing examples
*| Clustering
— Hierarchical
— K-means
— Mean Shift

— Graph-theoretic
* Normalized cuts




Histograms vs. clustering

Segmentation as clustering

* Cluster similar pixels (features) together

Segmentation as clustering

* Cluster similar pixels (features) together
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Hierarchical clustering

» Agglomerative: Each point is a cluster,
Repeatedly merge two nearest clusters

« Divisive: Start with single cluster,
Repeatedly split into most distant clusters

Dendrogram
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Inter-cluster distances

+ Single link: min distance between any
elements

D(C,C)) =min{d(x,y) IxeC,yeC}
» Complete link: max distance between any
elements
D(C,Cy) =max{d(x,y) I xeC,y eC}
» Average link
D(C,Cy) =avg{d(x,y) IxeC,y C}




K-means

* Given k, want to minimize
error among k clusters

» Error defined as distance
of cluster points to its
center

» Search space too large

* k-means: iterative ot

algorithm :
— Fix cluster centers, allocate

— Fix allocation, compute best
centers

Aiton's Graphice

K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)

K-means slides by
Andrew Moore
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K-means

Ask user how many
clusters they'd like.
(e.g. k=5) ot

Randomly guess k
cluster Center
locations

K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5}

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)

Sty Srahicn

K-means
1. Ask user how many
clusters they'd like.
(eg. k=5) .
2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

Atns behics

K-means
1. Ask user how many
clusters they'd like.
(e.g. k=5)
2. Randomly guess k

cluster Center
locations

3. Each datapaoint finds
out which Center it's
closest to.

4, Each Center finds
the centroid of the
points it owns...

5. ..and jumps there

6. ..Repeat until
terminated!




K-means for color-based
segmentation

Clusters on intensity Clusters on color

Image Clusters on color

K-means using color alone, 11 segments

Adnpted o Ererid Fornyt, U Beriele

K-means using
color alone,

11 segments.

K-means using colour and
position, 20 segments

K-means and outliers

outher

(A): Undesirable clusters

outher

K-means

» Use of centroid + spread — doesn’t
describe irregularly shaped clusters

(A): Two natural clusters (B): A-means clusters




K-means
* Pros
— Simple
— Converges to local minimum of within-cluster squared
error

— Fast to compute

» Conslissues
— Setting k?
— Sensitive to initial centers (seeds)
— Usable only if mean is defined
— Detects spherical clusters
— Careful combining feature types

Expectation Maximization (EM)

®
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A probabilistic variant of K-means:
» E step: “soft assignment” of points to clusters
— estimate probability that a point is in a cluster
* M step: update cluster parameters
— mean and variance info (covariance matrix)
» maximizes the likelihood of the points given the clusters
+ Forsyth Chapter 16 (optional)

Slide credit: Steve Seitz

Mean shift

» Seeks the mode among sampled
data, or point of highest density
— Choose search window size
— Choose initial location of
search window
— Compute mean location
(centroid) in window

— Re-center search window at
mean location

— Repeat until convergence

Fukunaga & Hostetler 1975 Comaniciu & Meer, PAMI 2002

Probabilistic clustering

Basic questions

« what's the probability that a point x is in cluster m?
* what's the shape of each cluster?

K-means doesn’t answer these questions

Probabilistic clustering (basic idea)
+ Treat each cluster as a Gaussian density function
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Slide credit: Steve Seitz

Outline

* Why segmentation?
» Gestalt properties, fun illusions and/or
revealing examples
* Clustering
— Hierarchical
— K-means
— Mean Shift

— Graph-theoretic
« Normalized cuts

Mean shift

Region of
interest
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mass
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Slide by Y. Ukrainitz & B. Sarel




Mean shift
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Mean shift

Center of
mass

L]
Center of
. mass
L
*
L]
L]
d L]
L

Slide by Y. Ukrainitz & B. Sarel

[ ]
L
L
*
*
[ ]
® [
*

Slide by Y. Ukrainitz & B. Sarel

Center of
mass

Mean shift
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Real Modality Analysis

Tessellate the space Run the procedure in parallel

with windows

Real Modality Analysis
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The blue data points were traversed by the windows towards the mode
Slide by Y. Ukrainitz & B. Sarel

Mean shift segmentation

Drigimal “lake" Segmented

Comaniciu & Meer, PAMI 2002

CAMSHIFT [G. Bradski]

» Variant on mean shift: “Continuously adaptive
mean shift”

» Shown for face tracking for a user interface

* Want mode of color distribution in a video scene

» Dynamic distribution now, since there is motion,
scale change

» Adjust search window size dynamically, based
on area of face

CAMSHIFT [G. Bradski]

Figure 4: CAMSHIFT in operation down the left then
right colunus




CAMSHIFT [G. Bradski]

Figure 7: C of the flesh probability distnbution
marked on the source video image

CAMSHIFT [G. Bradski]

e 12: CAMSHIFT-based foce tracker ised -

Figure 13: CAMSHIFT-based face tacker sed 1o FIZUre 13: CAMSHIFT-based foce tracker used fo play

Cuake 2 hanwds free by inserting control variables into the
motse quete

over a 3D graphic’s model of Hawaii

Mean shift
Pros:

— Does not assume shape on clusters (e.g.
elliptical)

— One parameter choice (window size)
— Generic technique

— Find multiple modes

Cons:

— Selection of window size

— Does not scale well with dimension of feature
space (but may insert approx. for high-d
data...)

Graph-theoretic clustering

Graph representation
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Weight Matrix

(“Affinity matrix”)

* From Keurram Heasadn-Shatque CAFSL1S Computer Viskon 2003




Images as graphs

Fully-connected graph
* node for every pixel
« link between every pair of pixels, p,q

* similarity c,,, for each link
» similarity is inversely proportional to difference in color and position

Slide by Steve Seitz

Segmentation by Graph Cuts
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Break Graph into Segments
« Delete links that cross between segments
« Easiest to break links that have low similarity
— similar pixels should be in the same segments
— dissimilar pixels should be in different segments

Slide by Steve Seitz

Measuring affinity

* One possibility:
affx.v)= exp{r—{: %ai (e—>° )}

Small sigma: Y“ ) o / Large sigma:

group only . group distant
nearby point;\

points

distance®

Scale affects affinity

0=.2

Data points

o=.1 0=.2 =1

Affinity matrices

Eigenvectors and cuts

» Want a vector a giving the association
between each element and a cluster

» Want elements within this cluster to have
strong affinity with one another

.. T
- Maximize a Aa

subject to the constraint g g =1

» Eigenvalue problem : choose the
eigenvector of A with largest eigenvalue

Rayleigh Quotient

o Given a symmetric matrix A, find a vector @ such that

» = Az is maximum AND

i x" Ax

® Find @ such that S50

o z)?=1

is maxinm.
e solution to this problem s given by the following theorem:
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regehes its absolute maximmm when 2 is an eigenvector of A corresponding to the farg

gest




Example

1" Data points

Affinity matrix

Eigenvectors and multiple cuts

» Use eigenvectors associated with k largest
eigenvalues as cluster weights

* Or re-solve recursively

Scale affects affinity, number of clusters

Data points ‘ :

Affinity
matrices

Eigenvalues
of the affinity :
matrices e

Graph partitioning: Min cut

» Select bipartition that minimizes cut value,
i.e., total weight of edges removed

A, B are disjoint
sets

(A, B)= ¥ ey
pEAGER

Fast algorithms exist for this

Min cut

» Problem: weight of cut proportional to
number of edges in the cut; min cut
penalizes large segments
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Fig. 1. A case whane minimum cut gives a bad partition,

[Shi & Malik, 2000 PAMI]

Normalized cuts

* First eigenvector of affinity matrix captures
within cluster similarity, but not across
cluster difference

* Would like to maximize the within cluster
similarity relative to the across cluster
difference




Normalized cuts Normalized cuts

* Minimize  cut(A,B) + cut(A,B) * Minimize  cut(A,B) i cut(A.B)
assoc(A.V) assoc(B.V) assoc(A.V) assoc(B.V)
\ 1 \
= total connection from nodes = total connection from nodes
in A to all nodes in graph (V) l in A to all nodes in graph (V)

* To get disjoint groups A, B for which within * Maximize  (4500c(A,A)) [ assoc(B,B)
cluster similarity is high compared to their (assoc(A V)) (assoc(B V))
association with rest of graph ’ '

Normalized cuts

» Exact discrete solution is NP-complete
[Papadimitrou 1997] ®

+ But can efficiently approximate via
generalized eigenvalue problem [Shi &
Malik] ©

Figure from “Image and video segmentation: the normalised cut framework”,
by Shi and Malik, copyright IEEE, 1998

BF.NN

Figure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000

it/ fwww s herkelew edu/=malik/naners SM-ncut ndf




Examples of grouping in vision

* Assume that
neighboring
pixels with the
same motion are
part of the same
object

Objects A, B
translate, C
rotates

Shapiro & Stockman, P. Duygulu

, };’ g =
L =
N W

Motion segmentation

Features =
measure of
motion/velocity

Motion Segmentation and Tracking Using
Normalized Cuts [Shi & Malik 1998]

K-means vs. graph cuts, mean shift

» Graph cuts / spectral clustering, mean
shift: do not require model of data

distribution

Scale selection for spectral clustering

» How to select scale for analysis?
* What about multi-scale data?

Measuring affinity

aff (x.v)=exp {r—{ /G;. Q|T - )}

Small sigma:
group only
nearby points

Large sigma:
/ group distant
points

Scale affects affinity, number of clusters
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[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]




Local scale selection

» Possible solution: choose sigma per point

2(e. o.
Ay — exp (M)
i (}';'O'__;;

/

g; = I’I(S!'. .‘i‘;\')

Distance to Kth neighbor for point s_i

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Local scale selection

{a) (L1} (3]
Figure 2: The effect of local scaling. o) Input data poines. A tight cluster re: ma’< s within
a background cluster. (bi The affinity berween each point and its surrowdin
is indicated by the thickness of the line comnecting them. The affinities ae:
ru;‘ er than the affinities within the backgrownd eluster: () The correspo hsialization
nities after local scaling. The affinities across clisters are now nwrru antly lower
Jr an the affinities wichin any single cluster:

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Local scale selection, synthetic data
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[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Local scale selectlon image data
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Segmentation: Caveats

» Can’t hope for magic
* Intertwined with recognition problem

» Have to be careful not to make hard
decisions too soon

e Hard to evaluate

Next

* Fitting for grouping

* Read F&P Chapter 15 (ignore
fundamental matrix sections for now)

* Problem set 1 due Tues. — estimate time




