
Lecture 7: Segmentation

Thursday, Sept 20

Outline
• Why segmentation?
• Gestalt properties, fun illusions and/or 

revealing examples
• Clustering

– Hierarchical
– K-means
– Mean Shift
– Graph-theoretic

• Normalized cuts

Grouping

• Segmentation / Grouping / Perceptual 
organization: gather features that belong 
together

• Need an intermediate representation, compact 
description of key image (video, motion,…) parts

• Top down vs. bottom up
• Hard to measure success
• (Fitting: associate a model with observed 

features)

Examples of grouping in vision

[Figure by J. Shi]

[http://poseidon.csd.auth.gr/LAB_RESEARCH/Lat
est/imgs/SpeakDepVidIndex_img2.jpg]

Determine image regions
Find shot boundaries

Fg / Bg

[Figure by Wang & Suter]

Object-level grouping

Gestalt

• Gestalt: whole or group
• Whole is greater than sum of its parts
• Psychologists identified series of factors 

that predispose set of elements to be 
grouped

• Interesting observations/explanations, but 
not necessarily useful for algorithm 
building



Some Gestalt factors Muller-Lyer illusion

• http://www.michaelbach.de/ot/sze_muelue
/index.html

Gestalt principle: grouping key to visual perception.

Subjective contours

In Vision, D. Marr, 1982

Interesting tendency to explain by occlusion



D. Forsyth

In Vision, D. Marr, 1982; from J. L. Marroquin, “Human visual perception of structure”, 1976.
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Histograms vs. clustering Segmentation as clustering

• Cluster similar pixels (features) together
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Segmentation as clustering

• Cluster similar pixels (features) together
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Hierarchical clustering

• Agglomerative: Each point is a cluster, 
Repeatedly merge two nearest clusters

• Divisive: Start with single cluster, 
Repeatedly split into most distant clusters

Dendrogram Inter-cluster distances

• Single link: min distance between any 
elements

• Complete link: max distance between any 
elements

• Average link



K-means
• Given k, want to minimize 

error among k clusters
• Error defined as distance 

of cluster points to its 
center

• Search space too large
• k-means: iterative 

algorithm :
– Fix cluster centers, allocate
– Fix allocation, compute best 

centers

K-means slides by 
Andrew Moore



K-means for color-based 
segmentation

K-means and outliers K-means

• Use of centroid + spread – doesn’t 
describe irregularly shaped clusters



K-means
• Pros

– Simple
– Converges to local minimum of within-cluster squared 

error
– Fast to compute

• Cons/issues
– Setting k?
– Sensitive to initial centers (seeds)
– Usable only if mean is defined
– Detects spherical clusters
– Careful combining feature types

Probabilistic clustering
Basic questions

• what’s the probability that a point x is in cluster m?
• what’s the shape of each cluster?

K-means doesn’t answer these questions

Probabilistic clustering (basic idea)
• Treat each cluster as a Gaussian density function

Slide credit: Steve Seitz

Expectation Maximization (EM)

A probabilistic variant of K-means:
• E step: “soft assignment” of points to clusters

– estimate probability that a point is in a cluster
• M step:  update cluster parameters

– mean and variance info (covariance matrix)
• maximizes the likelihood of the points given the clusters
• Forsyth Chapter 16 (optional)

Slide credit: Steve Seitz
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• Normalized cuts

Mean shift
• Seeks the mode among sampled 

data, or point of highest density
– Choose search window size 
– Choose initial location of 

search window
– Compute mean location 

(centroid) in window
– Re-center search window at 

mean location
– Repeat until convergence

Fukunaga & Hostetler 1975 Comaniciu & Meer, PAMI 2002

Mean shift
Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz &  B. Sarel
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Real Modality Analysis

Tessellate the space 
with windows

Run the procedure in parallel

Real Modality Analysis

The blue data points were traversed by the windows towards the mode
Slide by Y. Ukrainitz  &  B. Sarel

Mean shift segmentation

Comaniciu & Meer, PAMI 2002 Comaniciu & Meer, PAMI 2002

CAMSHIFT [G. Bradski]

• Variant on mean shift: “Continuously adaptive 
mean shift”

• Shown for face tracking for a user interface
• Want mode of color distribution in a video scene
• Dynamic distribution now, since there is motion, 

scale change
• Adjust search window size dynamically, based 

on area of face

CAMSHIFT [G. Bradski]



CAMSHIFT [G. Bradski] CAMSHIFT [G. Bradski]

Mean shift
• Pros:

– Does not assume shape on clusters (e.g. 
elliptical)

– One parameter choice (window size)
– Generic technique
– Find multiple modes

• Cons:
– Selection of window size
– Does not scale well with dimension of feature 

space (but may insert approx. for high-d 
data…)

Graph-theoretic clustering

Graph representation

a    b    c    d    e
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Weighted graph representation

(“Affinity matrix”)



q

Images as graphs

Fully-connected graph
• node for every pixel
• link between every pair of pixels, p,q
• similarity cpq for each link

» similarity is inversely proportional to difference in color and position

p

Cpq
c

Slide by Steve Seitz

Segmentation by Graph Cuts

Break Graph into Segments
• Delete links that cross between segments
• Easiest to break links that have low similarity

– similar pixels should be in the same segments
– dissimilar pixels should be in different segments

w

A B C

Slide by Steve Seitz

Measuring affinity
• One possibility: 

Small sigma: 
group only 
nearby points

Large sigma: 
group distant 
points

Scale affects affinity

σ=.1 σ=.2 σ=1

σ=.2 

Data points

Affinity matrices

Eigenvectors and cuts
• Want a vector a giving the association 

between each element and a cluster
• Want elements within this cluster to have 

strong affinity with one another

• Maximize

subject to the constraint

• Eigenvalue problem : choose the 
eigenvector of A with largest eigenvalue

aT Aa

aTa = 1

Rayleigh Quotient



Example

Data points

Affinity matrix

eigenvector

Eigenvectors and multiple cuts

• Use eigenvectors associated with k largest 
eigenvalues as cluster weights

• Or re-solve recursively

Scale affects affinity, number of clusters

Eigenvalues
of the affinity 
matrices

Data points

Affinity 
matrices

Graph partitioning: Min cut

• Select bipartition that minimizes cut value, 
i.e., total weight of edges removed

A B

Fast algorithms exist for this

A, B are disjoint 
sets

Min cut

• Problem:  weight of cut proportional to 
number of edges in the cut; min cut 
penalizes large segments

[Shi & Malik, 2000 PAMI]

Normalized cuts

• First eigenvector of affinity matrix captures 
within cluster similarity, but not across 
cluster difference

• Would like to maximize the within cluster 
similarity relative to the across cluster 
difference



Normalized cuts

• Minimize

• To get disjoint groups A, B for which within 
cluster similarity is high compared to their 
association with rest of graph

= total connection from nodes 
in A to all nodes in graph (V)

Normalized cuts

• Minimize

• Maximize

= total connection from nodes 
in A to all nodes in graph (V)
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assoc(A,V )
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Normalized cuts
• Exact discrete solution is NP-complete 

[Papadimitrou 1997] /
• But can efficiently approximate via 

generalized eigenvalue problem [Shi & 
Malik] ☺

Figure from “Image and video segmentation: the normalised cut framework”, 
by Shi and Malik, copyright IEEE, 1998

Figure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000



Examples of grouping in vision

Shapiro & Stockman, P. Duygulu

Motion segmentation

Features = 
measure of 
motion/velocity

Motion Segmentation and Tracking Using 
Normalized Cuts [Shi & Malik 1998]

K-means vs. graph cuts, mean shift

• Graph cuts / spectral clustering, mean 
shift: do not require model of data 
distribution

Scale selection for spectral clustering

• How to select scale for analysis?
• What about multi-scale data?

Measuring affinity

Small sigma: 
group only 
nearby points

Large sigma: 
group distant 
points

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Multi-
scale 
data

Scale affects affinity, number of clusters

Scale really 
affects 
clusters 



Local scale selection

• Possible solution: choose sigma per point

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Distance to Kth neighbor for point s_i

Local scale selection

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Local scale selection, synthetic data

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Zelnik-Manor & Perona, http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

Local scale selection, image data

Segmentation: Caveats

• Can’t hope for magic
• Intertwined with recognition problem
• Have to be careful not to make hard 

decisions too soon
• Hard to evaluate

Next

• Fitting for grouping
• Read F&P Chapter 15 (ignore 

fundamental matrix sections for now)
• Problem set 1 due Tues. – estimate time


