Lecture 7. Segmentation
Thursday, Sept 20
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Outline

 Why segmentation?

» Gestalt properties, fun illusions and/or
revealing examples
 Clustering
— Hierarchical
— K-means
— Mean Shift

— Graph-theoretic
* Normalized cuts







Grouping

Segmentation / Grouping / Perceptual
organization: gather features that belong
together

Need an intermediate representation, compact
description of key image (video, motion,...) parts

Top down vs. bottom up
Hard to measure success

(Fitting: associate a model with observed
features)
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[Figure by J. Si]
Determine image regions
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[http://poseidon.csd.auth.gr/LAB_RESEARCH/Lat
est/imgs/SpeakDepVidindex_img2.jpg]

Find shot boundaries

Examples of grouping in vision

[Figure by Wang & Suter]




Gestalt

Gestalt: whole or group
Whole is greater than sum of its parts

Psychologists identified series of factors
that predispose set of elements to be
grouped

Interesting observations/explanations, but
not necessarily useful for algorithm
building
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Some Gestalt factors

Parallelism

Symmetry

Continunity

Closure




Muller-Lyer illusion

* http://www.michaelbach.de/ot/sze muelue
/index.html
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Gestalt principle: grouping key to visual perception.










Subjective contours
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Interesting tendency to explain by occlusion

In Vision, D. Marr, 1982
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In Vision, D. Marr, 1982; from J. L. Marroquin, “Human visual perception of structure”, 1976.




Outline

 Why segmentation?

» Gestalt properties, fun illusions and/or
revealing examples
* Clustering
— Hierarchical
— K-means
— Mean Shift
— Graph-theoretic

 Normalized cuts




Histograms vs. clustering




Segmentation as clustering

» Cluster similar pixels (features) together




Segmentation as clustering

» Cluster similar pixels (features) together
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Hierarchical clustering

« Agglomerative: Each point is a cluster,
Repeatedly merge two nearest clusters

 Divisive: Start with single cluster,
Repeatedly split into most distant clusters




Dendrogram

distance




Inter-cluster distances

 Single link: min distance between any
elements

D(C;,C;) =min{d(x,y) [ x e C,y e Cj}

« Complete link: max distance between any
elements

D(C,, C;) =max{d(x,y) [ xeC,y e Cj}
* Average link
D(C,Cy) =avgid(x,y) [ xC,y € Cj}




K-means

Given k, want to minimize
error among Kk clusters

Error defined as distance
of cluster points to its
center

Search space too large
k-me_ans: iterative
algorithm :

— Fix cluster centers, allocate

— Fix allocation, compute best
centers




P Riton's Graghice 1G]
K-means |-
1. Ask user how many
clusters they'd like.
(e.g. k=5) 0.0 1
2.6 T
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K-means slides by
Andrew Moore




5.

K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations
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K-means

Ask user how many
clusters they'd like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)

Auton’s Graghics
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1.

K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns

Auton”“s Graghics




K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!
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K-means for color-based
segementation

Clusters on intensity Clusters on color




Clusters on color

K-means using color alone, 11 segments

Adapted from David Forsyth, UC Berkeley




K-means using
color alone,
11 segments.




K-means using colour and
position, 20 segments




K-means and outliers
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(B): Ideal clusters




K-means

« Use of centroid + spread — doesn’t
describe irregularly shaped clusters
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(A): Two natural clusters

(B): k-means clusters




K-means

* Pros
— Simple
— Converges to local minimum of within-cluster squared
error

— Fast to compute

« Consl/issues
— Setting k?
— Sensitive to initial centers (seeds)
— Usable only if mean is defined
— Detects spherical clusters
— Careful combining feature types




Probabillistic clustering

Basic questions
« what'’s the probability that a point x is in cluster m?
» what’s the shape of each cluster?

K-means doesn’t answer these questions

Probabilistic clustering (basic idea)
» Treat each cluster as a Gaussian density function

L it

Slide credit: Steve Seitz




Expectation Maximization (EM)

*
L Lt

A probabilistic variant of K-means:
» E step: “soft assignment” of points to clusters
— estimate probability that a point is in a cluster
» M step: update cluster parameters
— mean and variance info (covariance matrix)
« maximizes the likelihood of the points given the clusters
« Forsyth Chapter 16 (optional)

Slide credit: Steve Seitz




Outline

 Why segmentation?

» Gestalt properties, fun illusions and/or
revealing examples
 Clustering
— Hierarchical
— K-means
— Mean Shift

— Graph-theoretic
* Normalized cuts




Mean shift

+ Seeks the mode among sampled
data, or point of highest density

— Choose search window size

— Choose initial location of
search window

— Compute mean location
(centroid) in window

— Re-center search window at
mean location

— Repeat until convergence

Fukunaga & Hostetler 1975 Comaniciu & Meer, PAMI 2002




Mean shift

Region of
interest

Center of
mass

e o o \ Mean Shift
] vector

Slide by Y. Ukrainitz & B. Sarel




Slide by Y. Ukrainitz & B. Sarel

Mean shift
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Real Modality Analysis

Tessellate the space Run the procedure in parallel
with windows




Real Modality Analysis
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The blue data points were traversed by the windows towards the mode
Slide by Y. Ukrainitz & B. Sarel




Mean shift segmentation

Original "lake" Segmented

Original "hand" Segmented

)

er, PAMI 2002




Segmented "landscape 1" ‘ Segmented "landscape 2"

‘ Segmented "landscape 3" | Segmented "landscape 4"
=5 £

Comaniciu & Meer, PAMI 2002




CAMSHIFT [G. Bradski]

Variant on mean shift: “Continuously adaptive
mean shift”

Shown for face tracking for a user interface
Want mode of color distribution in a video scene

Dynamic distribution now, since there is motion,
scale change

Adjust search window size dynamically, based
on area of face




CAMSHIFT [G. Bradski]

Step 1 Step4

Figure 4: CAMSHIFT in operation down the left then
right columns




CAMSHIFT [G. Bradski]

Figure 7: Orientation of the flesh probability distribution
marked on the source video image




CAMSHIFT [G. Bradski]

Figure 12: CAMSHIFT-based face tracker used to play
Quake 2 hands free by inserting control variables into the
mouse queue

Figure 13: CAMSHIFT-based face tracker used to
over a 3D graphic’s model of Hawaii




Mean shift

* Pros:

— Does not assume shape on clusters (e.g.
elliptical)

— One parameter choice (window size)
— Generic technique
— Find multiple modes

« Cons:
— Selection of window size

— Does not scale well with dimension of feature
space (but may insert approx. for high-d
data...)




Graph-theoretic clustering




Graph representation
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* From Khurram Hassan-Shafigue CAPS415 Computer Vision 2003




Weighted graph representation
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Weight Matrix

(“Affinity matrix”)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003




Images as graphs

Fully-connected graph
* node for every pixel
* link between every pair of pixels, p,q

* similarity c,,, for each link
» similarity is inversely proportional to difference in color and position

Slide by Steve Seitz




Segmentation by Graph Cuts

L
A B C

Break Graph into Segments
* Delete links that cross between segments

* Easiest to break links that have low similarity
— similar pixels should be in the same segments
— dissimilar pixels should be in different segments

Slide by Steve Seitz




Measuring affinity

* One possibility:

N
)

aff (x.y)= expy —r %Jg_ ﬂ|r -y
Lo ia-

Large sigma:
e ¢ group distant
points

Small sigma: N~
group only
nearby points

affinity

40 50 BO
distance®




Scale affects affinity

Data points

Affinity matrices




Eigenvectors and cuts

Want a vector a giving the association
between each element and a cluster

Want elements within this cluster to have
strong affinity with one another

Maximize a Aa
subject to the constraint g'g=1

Eigenvalue problem : choose the
eigenvector of A with largest eigenvalue




Rayleigh Quotient

Given a symmetric matrix A, find a vector « such that

x” Az is maximum AND

L]
2 _
o [z =1
- T - -
e Find « such that %1—‘%17 is maximum.

The solution to this problem is given by the following theorem:

T . . . . . .
Tﬁ:{?nm reaches its absolute maximum when @ is an eigenvector of A corresponding to the largest

eigenvalue Apaz.




Example
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Eigenvectors and multiple cuts

» Use eigenvectors associated with k largest
eigenvalues as cluster weights

* Or re-solve recursively




Scale affects affinity, number of clusters

Data points . . o=2

Affinity
matrices

Eigenvalues
of the affinity
matrices

______




Graph partitioning: Min cut

» Select bipartition that minimizes cut value,
l.e., total weight of edges removed

A, B are disjoint
sets

Fast algorithms exist for this




Min cut

* Problem: weight of cut proportional to
number of edges in the cut; min cut
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Fig. 1. A case where minimum cut gives a bad partition.

[Shi & Malik, 2000 PAMI]




Normalized cuts

* First eigenvector of affinity matrix captures
within cluster similarity, but not across
cluster difference

 Would like to maximize the within cluster
similarity relative to the across cluster
difference




Normalized cuts

e Minimize  cut(A,B) . cut(A,B)

assoc(A,V) assoc(B,V)
\

= total connection from nodes
in A to all nodes in graph (V)

* To get disjoint groups A, B for which within
cluster similarity is high compared to their
association with rest of graph




Normalized cuts

e Minimize  cut(A,B) . cut(A,B)
assoc(A,V) assoc(B,V)

\

= total connection from nodes
in A to all nodes in graph (V)

 Maximize (aSSOC(A,A))+(aSSOC(B’B))
assoc(A,V) assoc(B,V)




Normalized cuts

« Exact discrete solution is NP-complete
[Papadimitrou 1997] ®

« But can efficiently approximate via
generalized eigenvalue problem [Shi &
Malik] ©




Figure from “Image and video segmentation: the normalised cut framework”,
by Shi and Malik, copyright IEEE, 1998




Figure from “Normalized cuts and image segmentation,” Shi and Malik, copyright IEEE, 2000




hitn-//www cs berkelev edii/~malik/naners/SM-ncut ndf




Examples of grouping in vision

* Assume that

neighboring P
pixels with the S B A
same motion are // ;’ - '
part of the same / - : f
object A~ <

+ Objects A, B N JV
translate, C c 7
rotates

Motion segmentation

Shapiro & Stockman, P. Duygulu




Features =
measure of
motion/velocity

Figure H: The first row shows an image sequence of Carl Lewis
running. Notice that the background is moving to the left as
the camera is panning to keep the runner in the center of the
image, and therefore background subtraction weould not work
as an image segmentation technigue. The original image size 1s
200 x 190, and image patches of size 3 x 3 is used to construct
the partition graph. Each of the image patches are connected
to others that are less than 5 superpixels and 3 image frames
away. How 2 to 4 show the motion segmentation produced by
our algorithm. Note these regions found corresponds the runner
in row 2, moving background in row 3, and the left lower leg in . . . .
row 4. The left lower leg is segmented from the runner because Motion _Segmentatlon and T_raCkmg Usmg
it undergoes significant upward rotation in these seven image . Normalized Cuts [Shi & Malik 1998]
frames. By recursive cuts and by lowering the maximum allowed

Ncut value, the other moving limbs can be found.




K-means vs. graph cuts, mean shift

» Graph cuts / spectral clustering, mean
shift: do not require model of data
distribution




Scale selection for spectral clustering

* How to select scale for analysis?
« What about multi-scale data?




Measuring affinity
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Segmentation: Caveats

Can’t hope for magic
Intertwined with recognition problem

Have to be careful not to make hard
decisions too soon

Hard to evaluate




Next

* Fitting for grouping
 Read F&P Chapter 15 (ignore
fundamental matrix sections for now)

* Problem set 1 due Tues. — estimate time




