
Lecture 8: Fitting

Tuesday, Sept 25



Announcements, schedule

• Grad student extensions
– Due end of term
– Data sets, suggestions

• Reminder: Midterm Tuesday 10/9
• Problem set 2 out Thursday, due 10/11



Outline

• Review from Thursday (affinity, cuts)
• Local scale and affinity computation
• Hough transform
• Generalized Hough transform

– Shape matching applications
• Fitting lines

– Least squares
– Incremental fitting, k-means 



Real Modality Analysis

Tessellate the space 
with windows

Run the procedure in parallel



Real Modality Analysis

The blue data points were traversed by the windows towards the mode
Slide by Y. Ukrainitz &  B. Sarel



Mean shift

• Labeling of data points: points visited by 
any window converging to same mode get 
the same label

• [Comaniciu & Meer, PAMI 2002] : If data 
point is visited by multiple diverging mean 
shift processes, “majority vote”



Weighted graph representation

(“Affinity matrix”)



q

Images as graphs

Fully-connected graph
• node for every pixel
• link between every pair of pixels, p,q
• similarity cpq for each link

» similarity is inversely proportional to difference in color and position

p

Cpq
c

Slide by Steve Seitz



Segmentation by Graph Cuts

Break Graph into Segments
• Delete links that cross between segments
• Easiest to break links that have low similarity

– similar pixels should be in the same segments
– dissimilar pixels should be in different segments

w
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Example

Dimension of points :  d = 2

Number of points : N = 4



Distance matrix

for i=1:N
for j=1:N

D(i,j) = ||xi- xj||2
end

end

0.24

0.01

0.47

D(1,:)=

D(:,1)=

0.24 0.01 0.47(0)



Distance matrix

for i=1:N
for j=1:N

D(i,j) = ||xi- xj||2
end

end

D(1,:)=

D(:,1)=

0.24 0.01 0.47(0)

0.15

0.24

0.29
(0) 0.29 0.150.24



Distance matrix

for i=1:N
for j=1:N

D(i,j) = ||xi- xj||2
end

end

N x N matrix



Measuring affinity
• One possibility: 
• Map distances to similarities, use as edge 

weights on graph



Distances affinities

for i=1:N
for j=1:N

D(i,j) = ||xi- xj||2
end

end

for i=1:N
for j=1:N

A(i,j) = exp(-1/(2*σ^2)*||xi- xj||2)
end

end

D A



Measuring affinity
• One possibility: 

• Essentially, affinity drops off after distance 
gets past some threshold

Small sigma: group 
only nearby points

Large sigma: 
group distant 
points

Incre
asin

g sig
ma



Scale affects affinityD=



Shuffling the affinity matrix

• Permute the order of the vertices, in terms 
of how they are associated with the matrix 
rows/cols



Scale affects affinity

σ=.1 σ=.2 σ=1

σ=.2 

Data points

Affinity matrices

Points x1…x10

Points x31…x40



Eigenvectors and graph cuts

A

w’

w
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Eigenvectors and graph cuts
• Want a vector w giving the “association”

between each element and a cluster
• Want elements within this cluster to have 

strong affinity with one another

• Maximize

subject to the constraint

. . . Aw = λw
Eigenvalue problem : choose the eigenvector 

of A with largest eigenvalue

aT Aa

aTa = 1

w w

w w



Rayleigh Quotient



Example

Data points

Affinity matrix

eigenvector



Eigenvectors and multiple cuts

• Use eigenvectors associated with k largest 
eigenvalues as cluster weights

• Or re-solve recursively



[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Multi-
scale 
data

Scale affects affinity, number of clusters

Scale really 
affects 
clusters 



Local scale selection

• Possible solution: choose sigma per point

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]

Distance to Kth neighbor for point s_i



Local scale selection

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]



Local scale selection, synthetic data

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]



Zelnik-Manor & Perona, http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

Local scale selection, image data

Image 
segmentation 
results, based on 
gray-scale 
differences alone.

The number of 
clusters was set 
manually here to 
force a large 
number of clusters.

Since the scale is 
tuned locally for 
each pixel we 
obtained segments 
with both high and 
low contrast to the 
surrounding. 





Fitting

• Want to associate a model with observed 
features

[Fig from Marszalek & Schmid, 2007]



Fitting lines

• Given points that belong to a line, what is 
the line?

• How many lines are there?
• Which points belong to which lines?



Difficulty of fitting lines
• Extraneous data: clutter, 

multiple models
• Missing data: only some parts 

of model are present
• Noise in the measured edge 

points, orientations
• Cost: infeasible to check all 

combinations of features by 
fitting a model to each 
possible subset

…Enter: 
Voting 
schemes



Hough transform

• Maps model (pattern) detection problem to 
simple peak detection problem

• Record all the structures on which each point 
lies, then look for structures that get many votes

• Useful for line fitting



Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz



Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b
• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0



Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b
• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0



Polar representation for lines

• Issues with (m,b) parameter space:
– Can take on infinite values
– Undefined for vertical lines (x=constant)



Polar representation for lines

d: perpendicular distance 
from line to origin

ө : angle the perpendicular 
makes with the x-axis          
(0 <= ө <= 2π) 

ө

d

[0,0]
x

y

x cos ө + y sin ө + d = 0

Point in image space sinusoid segment in Hough space



Hough transform algorithm
Using the polar parameterization:

Basic Hough transform algorithm
1. Initialize H[d, θ]=0
2. for each edge point I[x,y] in the image

for θ = 0 to 180  // some quantization

H[d, θ] += 1
3. Find the value(s) of (d, θ) where H[d, θ] is maximum
4. The detected line in the image is given by

Hough line demo

H: accumulator array (votes)

d

θ

Time complexity (in terms of number of votes)?



Image space
edge coordinates

Votes

θ

d

x

y

Example: Hough transform for straight lines



Example: Hough transform for straight lines

Square : Circle : 



Example: Hough transform for straight lines



Example with noise

Image space
edge coordinates

Votes

θx

y d



Example with noise / random points

Image space
edge coordinates

Votes



Extensions
Extension 1:  Use the image gradient

1. same
2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y)
H[d, θ] += 1

3. same
4. same

(Reduces degrees of freedom)

Extension 2
• give more votes for stronger edges

Extension 3
• change the sampling of (d, θ) to give more/less resolution

Extension 4
• The same procedure can be used with circles, squares, or any 

other shape



Recall: Image gradient
The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude



Extensions
Extension 1:  Use the image gradient

1. same
2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y)
H[d, θ] += 1

3. same
4. same

(Reduces degrees of freedom)

Extension 2
• give more votes for stronger edges (use magnitude of gradient)

Extension 3
• change the sampling of (d, θ) to give more/less resolution

Extension 4
• The same procedure can be used with circles, squares, or any 

other shape…



Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii =−+−

Hough spaceImage space



Hough transform for circles

• For unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii =−+−

Hough spaceImage space



Hough transform for circles

• For unknown radius r, known gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii =−+−

Hough spaceImage space

θ

x



Hough transform for circles
For every edge pixel (x,y) : 

For each possible radius value r:
θ = gradient direction, from x,y to center 
a = x – r cos(θ)
b = y + r sin(θ)
H[a,b,r] += 1

end
end



Real World Circle Examples

Crosshair indicates results of Hough transform,
bounding box found via motion differencing.



Finding Coins
Original Edges (note noise)



Finding Coins
Penny Quarters



Finding Coins

Coin finding sample images from: 
Vivek Kwatra

Note: a different Hough 
transform (with separate 
accumulators) was used 
for each circle radius 
(quarters vs. penny).



Hough transform for 
parameterized curves

For any curve with analytic form f(x,a) = 0, where

1. Initialize accumulator array: H[a] = 0
2.For each edge pixel:

determine each a such that f(x,a) = 0, and 
increment H[a]

3. Local maxima in H correspond to curves

x : edge pixel in image coordinates
a : vector of parameters



Practical tips

• Minimize irrelevant tokens first (take edge points 
with significant gradient magnitude)

• Choose a good grid / discretization (trial and 
error)

• Vote for neighbors, also (smoothing in 
accumulator array)

• Utilize direction of edge to reduce free 
parameters by 1



Hough transform

• Pros
– All points are processed independently, so 

can cope with occlusion
– Some robustness to noise: noise points 

unlikely to contribute consistently to any 
single bin

– Can detect multiple instances of a model in a 
single pass



Hough transform
• Cons

– Complexity of search time increases 
exponentially with the number of model 
parameters 

– Non-target shapes can produce spurious 
peaks in parameter space

– Quantization: hard to pick a good grid size
• Too coarse large votes obtained when too many different 

lines correspond to a single bucket
• Too fine miss lines because some points that are not 

exactly collinear cast votes for different buckets



Generalized Hough transform

• What if we still know direction to some 
reference point (a), but allow arbitrary 
shapes defined by their boundary points?

Image space

θ

x

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Image space

x

r1 = a – p1

r2 = a – p2

a

p1 p2



Generalized Hough transform

• For model shape: construct a table storing these 
r vectors as function of gradient direction

• To detect model shape: for each edge point

– Index into table with θ

– Use indexed r vectors to vote for (x,y) position 
of reference point

• Peak in this Hough space is reference point with 
most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.



Generalized Hough transform

a

Model shape



Generalized Hough transform

New test shape : observed edges



Generalized Hough Transform
Find Object Center                   given edges 

Create Accumulator Array 

Initialize:

For each edge point

For each r vector entry indexed in table, compute:

Increment Accumulator:

Find  peaks in
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With modifications to table can generalize to add scale, orientation –
increases size of accumulator array



Generalizing for scale, orientation

• To search for shapes at arbitrary scale 
and orientation
– Add the parameters to the accumulator array 

(4d)
– Update table



Example in recognition: 
implicit shape model

• Build ‘codebook’ of local appearance for 
each category using agglomerative 
clustering

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]



Codebook

Patch descriptors 
extracted from lots of 
car images



Example in recognition: 
implicit shape model

• Build ‘codebook’ of local appearance for 
each category using agglomerative 
clustering

• In all training images, match codebook 
entries to images with cross correlation 
(activate all entries with similarity > t)

• For each codebook entry, store all 
positions it was found, relative to object 
center

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]



• Given test image, extract patches, match 
to codebook entry (or entries)

• Cast votes for possible positions of object 
center

• Search for maxima in voting space using 
Mean-Shift

• (Extract weighted segmentation mask 
based on stored masks for the codebook 
occurrences)

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]

Implicit shape model



Implicit shape model

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]



Grouping and fitting
• Grouping, segmentation: make a compact 

representation that merges similar features
– Relevant algorithms: K-means, hierarchical clustering, 

Mean Shift, Graph cuts

• Fitting: fit a model to your observed features
– Relevant algorithms: Hough transform for lines, 

circles (parameterized curves), generalized Hough 
transform for arbitrary boundaries; least squares; 
assigning points to lines incrementally or with k-
means


