Lecture 8: Fitting

Tuesday, Sept 25
• Grad student extensions
 – Due end of term
 – Data sets, suggestions

• Reminder: Midterm Tuesday 10/9
• Problem set 2 out Thursday, due 10/11
Outline

• Review from Thursday (affinity, cuts)
• Local scale and affinity computation
• Hough transform
• Generalized Hough transform
 – Shape matching applications
• Fitting lines
 – Least squares
 – Incremental fitting, k-means
Real Modality Analysis

Tessellate the space with windows

Run the procedure in parallel
Real Modality Analysis

The blue data points were traversed by the windows towards the mode
Mean shift

• Labeling of data points: points visited by any window converging to same mode get the same label

• [Comaniciu & Meer, PAMI 2002] : If data point is visited by multiple diverging mean shift processes, “majority vote”
Weighted graph representation

\[
\begin{bmatrix}
0 & 1 & 3 & \infty & \infty \\
1 & 0 & 4 & \infty & 2 \\
3 & 4 & 0 & 6 & 7 \\
\infty & \infty & 6 & 0 & 1 \\
\infty & 2 & 7 & 1 & 0 \\
\end{bmatrix}
\]

Weight Matrix

("Affinity matrix")

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Images as graphs

Fully-connected graph

- node for every pixel
- link between *every* pair of pixels, \(p, q \)
- similarity \(c_{pq} \) for each link

> similarity is *inversely proportional* to difference in color and position
Segmentation by Graph Cuts

Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low similarity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments
Example

Dimension of points : $d = 2$
Number of points : $N = 4$
Distance matrix

```
for i=1:N
    for j=1:N
        D(i,j) = ||x_i - x_j||^2
    end
end
```

\[
D(:,1) =
\begin{bmatrix}
0.24 \\
0.01 \\
0.47
\end{bmatrix}
\]

\[
D(1,:) =
\begin{bmatrix}
0
\end{bmatrix}
\]
for i=1:N
 for j=1:N
 D(i,j) = ||x_i - x_j||^2
 end
end
Distance matrix

\[\text{for } i=1:N \]
\[\text{for } j=1:N \]
\[D(i,j) = ||x_i - x_j||^2 \]
\[\text{end} \]
\[\text{end} \]
Measuring affinity

• One possibility: \[\text{aff}(x, y) = \exp\left\{-\left(\frac{1}{2\sigma^2} \right) ||x - y||^2 \right\} \]

• Map distances to similarities, use as edge weights on graph
Distances \rightarrow affinities

$$D(i,j) = ||x_i - x_j||^2$$

$$A(i,j) = \exp\left(-\frac{1}{2\sigma^2}||x_i - x_j||^2\right)$$
Measuring affinity

- One possibility: \[\text{aff}(x, y) = \exp\left\{-\left(\frac{1}{2\sigma_x^2}\right)\|x - y\|^2\right\} \]

- Essentially, affinity drops off after distance gets past some threshold

Small sigma: group only nearby points

Large sigma: group distant points
Scale affects affinity
Shuffling the affinity matrix

- Permute the order of the vertices, in terms of how they are associated with the matrix rows/cols
Scale affects affinity

Data points

Affinity matrices

Points $x_1 \ldots x_{10}$

Points $x_{31} \ldots x_{40}$
Eigenvectors and graph cuts

$w'Aw = \sum_i \sum_j w_i A_{ij} w_j$
Eigenvectors and graph cuts

• Want a vector w giving the “association” between each element and a cluster
• Want elements within this cluster to have strong affinity with one another
• Maximize $w^T A w$

subject to the constraint $w^T w = 1$

$A w = \lambda w$

Eigenvalue problem: choose the eigenvector of A with largest eigenvalue
Rayleigh Quotient

- Given a symmetric matrix A, find a vector x such that
 - $x^T Ax$ is maximum AND
 - $\|x\|^2 = 1$

- Find x such that $\frac{x^T Ax}{x^T x}$ is maximum.

The solution to this problem is given by the following theorem:

- $\frac{x^T Ax}{x^T x}$ reaches its absolute maximum when x is an eigenvector of A corresponding to the largest eigenvalue λ_{max}.
Example

Data points

Affinity matrix

eigenvector
Eigenvectors and multiple cuts

- Use eigenvectors associated with k largest eigenvalues as cluster weights
- Or re-solve recursively
Scale affects affinity, number of clusters

Figure 1: Spectral clustering without local scaling (using the NJW algorithm.) Top row: When the data incorporates multiple scales standard spectral clustering fails. Note, that the optimal σ for each example (displayed on each figure) turned out to be different. Bottom row: Clustering results for the top-left point-set with different values of σ. This highlights the high impact σ has on the clustering quality. In all the examples, the number of groups was set manually. The data points were normalized to occupy the $[-1,1]^2$ space.

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]
Local scale selection

- Possible solution: choose sigma per point

\[
\hat{A}_{ij} = \exp \left(\frac{-d^2(s_i, s_j)}{\sigma_i \sigma_j} \right)
\]

\[
\sigma_i = d(s_i, s_K)
\]

Distance to Kth neighbor for point \(s_i \)

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]
Local scale selection

Figure 2: The effect of local scaling. (a) Input data points. A tight cluster resides within a background cluster. (b) The affinity between each point and its surrounding neighbors is indicated by the thickness of the line connecting them. The affinities across clusters are larger than the affinities within the background cluster. (c) The corresponding visualization of affinities after local scaling. The affinities across clusters are now significantly lower than the affinities within any single cluster.

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]
Local scale selection, synthetic data

(Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004)
Local scale selection, image data

<table>
<thead>
<tr>
<th>Our result (self-tuning)</th>
<th>Single Scale Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>For this image we got good results using both approaches.</td>
<td>Using the same scale as above failed on this image.</td>
</tr>
<tr>
<td>Recall, we use intensity only and no texture information.</td>
<td>Only high contrast boundaries are detected.</td>
</tr>
<tr>
<td>Using local-scaling the high contrast trees as well as the low contrast windows and building boundaries are detected.</td>
<td></td>
</tr>
</tbody>
</table>

Image segmentation results, based on gray-scale differences alone.

The number of clusters was set manually here to force a large number of clusters.

Since the scale is tuned locally for each pixel we obtained segments with both high and low contrast to the surrounding.

Fitting

• Want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]
Fitting lines

• Given points that belong to a line, what is the line?
• How many lines are there?
• Which points belong to which lines?
Difficulty of fitting lines

- Extraneous data: clutter, multiple models
- Missing data: only some parts of model are present
- Noise in the measured edge points, orientations
- **Cost:** infeasible to check all combinations of features by fitting a model to each possible subset

...Enter: Voting schemes
Hough transform

- Maps model (pattern) detection problem to simple peak detection problem
- Record all the structures on which each point lies, then look for structures that get many votes
- Useful for line fitting
Finding lines in an image

\[y = m_0 x + b_0 \]

Connection between image \((x,y)\) and Hough \((m,b)\) spaces

- A line in the image corresponds to a point in Hough space.

To go from image space to Hough space:

- Given a set of points \((x,y)\), find all \((m,b)\) such that \(y = mx + b\).
Finding lines in an image

Connection between image \((x,y)\) and Hough \((m,b)\) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points \((x,y)\), find all \((m,b)\) such that \(y = mx + b\)
- What does a point \((x_0, y_0)\) in the image space map to?
 - Answer: the solutions of \(b = -x_0m + y_0\)
 - this is a line in Hough space
Finding lines in an image

Connection between image \((x, y)\) and Hough \((m, b)\) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points \((x, y)\), find all \((m, b)\) such that \(y = mx + b\)
- What does a point \((x_0, y_0)\) in the image space map to?
 - Answer: the solutions of \(b = -x_0m + y_0\)
 - this is a line in Hough space
Polar representation for lines

- Issues with \((m,b)\) parameter space:
 - Can take on infinite values
 - Undefined for vertical lines \((x=\text{constant})\)
Polar representation for lines

\[x \cos \theta + y \sin \theta + d = 0 \]

Point in image space \(\rightarrow\) sinusoid segment in Hough space
Hough transform algorithm

Using the polar parameterization:

\[d = x\cos \theta + y\sin \theta \]

Basic Hough transform algorithm

1. Initialize \(H[d, \theta] = 0 \)
2. for each edge point \(I[x, y] \) in the image
 for \(\theta = 0 \) to 180 // some quantization
 \[d = x\cos \theta + y\sin \theta \]
 \(H[d, \theta] += 1 \)
3. Find the value(s) of \((d, \theta) \) where \(H[d, \theta] \) is maximum
4. The detected line in the image is given by \(d = x\cos \theta + y\sin \theta \)

Hough line demo

Time complexity (in terms of number of votes)?
Example: Hough transform for straight lines

Image space
edge coordinates

Votes
Example: Hough transform for straight lines

Square :

Circle :
Example: Hough transform for straight lines
Example with noise

Image space edge coordinates

Votes
Example with noise / random points

Image space edge coordinates

Votes
Extensions

Extension 1: Use the image gradient
 1. same
 2. for each edge point $I[x,y]$ in the image
 compute unique (d, θ) based on image gradient at (x,y)
 $H[d, \theta] += 1$
 3. same
 4. same

(Reduces degrees of freedom)
Recall: Image gradient

The gradient of an image:

\[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

The gradient points in the direction of most rapid change in intensity.

The gradient direction (orientation of edge normal) is given by:

\[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]

The edge strength is given by the gradient magnitude:

\[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]
Extensions

Extension 1: Use the image gradient
 1. same
 2. for each edge point I[x,y] in the image
 compute unique (d, θ) based on image gradient at (x,y)
 \[H[d, \theta] += 1 \]
 3. same
 4. same
(Reduces degrees of freedom)

Extension 2
 • give more votes for stronger edges (use magnitude of gradient)

Extension 3
 • change the sampling of (d, θ) to give more/less resolution

Extension 4
 • The same procedure can be used with circles, squares, or any other shape…
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)
 \[
 (x_i - a)^2 + (y_i - b)^2 = r^2
 \]
- For a fixed radius \(r\), unknown gradient direction
Hough transform for circles

- Circle: center \((a,b)\) and radius \(r\)
 \[
 (x_i - a)^2 + (y_i - b)^2 = r^2
 \]
- For unknown radius \(r\), unknown gradient direction
Hough transform for circles

- Circle: center \((a, b)\) and radius \(r\)

 \[(x_i - a)^2 + (y_i - b)^2 = r^2\]

- For unknown radius \(r\), known gradient direction
Hough transform for circles

For every edge pixel \((x,y)\):

For each possible radius value \(r\):

\[\theta = \text{gradient direction, from } x,y \text{ to center} \]

\[a = x - r \cos(\theta) \]

\[b = y + r \sin(\theta) \]

\[H[a,b,r] += 1 \]

end

end
Real World Circle Examples

Crosshair indicates results of Hough transform, bounding box found via motion differencing.
Finding Coins

Original

Edges (note noise)
Finding Coins

Penny

Quarters
Finding Coins

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Coin finding sample images from: Vivek Kwatra
Hough transform for parameterized curves

For any curve with analytic form $f(x,a) = 0$, where

- x: edge pixel in image coordinates
- a: vector of parameters

1. Initialize accumulator array: $H[a] = 0$
2. For each edge pixel:
 - determine each a such that $f(x,a) = 0$, and increment $H[a]$
3. Local maxima in H correspond to curves
Practical tips

- Minimize irrelevant tokens first (take edge points with significant gradient magnitude)
- Choose a good grid / discretization (trial and error)
- Vote for neighbors, also (smoothing in accumulator array)
- Utilize direction of edge to reduce free parameters by 1
Hough transform

• Pros
 – All points are processed independently, so can cope with occlusion
 – Some robustness to noise: noise points unlikely to contribute consistently to any single bin
 – Can detect multiple instances of a model in a single pass
Hough transform

• Cons
 – Complexity of search time increases exponentially with the number of model parameters
 – Non-target shapes can produce spurious peaks in parameter space
 – Quantization: hard to pick a good grid size
 • Too coarse → large votes obtained when too many different lines correspond to a single bucket
 • Too fine → miss lines because some points that are not exactly collinear cast votes for different buckets
Generalized Hough transform

• What if we still know direction to some reference point (a), but allow arbitrary shapes defined by their boundary points?

\[\begin{align*}
 r_1 &= a - p_1 \\
 r_2 &= a - p_2
\end{align*} \]

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
Generalized Hough transform

• For model shape: construct a table storing these r vectors as function of gradient direction

• To detect model shape: for each edge point
 – Index into table with θ
 – Use indexed r vectors to vote for (x,y) position of reference point

• Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.
Generalized Hough transform

Model shape

<table>
<thead>
<tr>
<th>i</th>
<th>ϕ_i</th>
<th>R_{s_i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>${r</td>
</tr>
<tr>
<td>1</td>
<td>$\Delta\phi$</td>
<td>${r</td>
</tr>
<tr>
<td>2</td>
<td>$2\Delta\phi$</td>
<td>${r</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Generalized Hough transform

New test shape: observed edges
Generalized Hough Transform

Find Object Center \((x_c, y_c) \) given edges \((x_i, y_i, \phi_i) \)

Create Accumulator Array \(A(x_c, y_c) \)

Initialize: \(A(x_c, y_c) = 0 \) \(\forall (x_c, y_c) \)

For each edge point \((x_i, y_i, \phi_i) \)

For each \(r \) vector entry indexed in table, compute:

\[
\begin{align*}
x_c &= x_i + r_k^i \cos \alpha_k^i \\
y_c &= y_i + r_k^i \sin \alpha_k^i
\end{align*}
\]

Increment Accumulator: \(A(x_c, y_c) = A(x_c, y_c) + 1 \)

Find peaks in \(A(x_c, y_c) \)

With modifications to table can generalize to add scale, orientation – increases size of accumulator array
Generalizing for scale, orientation

• To search for shapes at arbitrary scale and orientation
 – Add the parameters to the accumulator array (4d)
 – Update table
Example in recognition: implicit shape model

- Build ‘codebook’ of local appearance for each category using agglomerative clustering

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]
Codebook

Patch descriptors extracted from lots of car images
Example in recognition: implicit shape model

• Build ‘codebook’ of local appearance for each category using agglomerative clustering
• In all training images, match codebook entries to images with cross correlation (activate all entries with similarity > t)
• For each codebook entry, store all positions it was found, relative to object center

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]
Implicit shape model

• Given test image, extract patches, match to codebook entry (or entries)
• Cast votes for possible positions of object center
 • Search for maxima in voting space using Mean-Shift
• (Extract weighted segmentation mask based on stored masks for the codebook occurrences)

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]
Implicit shape model

Fig. 1. The recognition procedure. Image patches are extracted around interest points and compared to the codebook. Matching patches then cast probabilistic votes, which lead to object hypotheses that can later be refined. Based on the refined hypotheses, we compute a category-specific segmentation.

[Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]
Grouping and fitting

• Grouping, segmentation: make a compact representation that merges similar features
 – Relevant algorithms: K-means, hierarchical clustering, Mean Shift, Graph cuts

• Fitting: fit a model to your observed features
 – Relevant algorithms: Hough transform for lines, circles (parameterized curves), generalized Hough transform for arbitrary boundaries; least squares; assigning points to lines incrementally or with k-means