Lecture 8: Fitting

Tuesday, Sept 25




Announcements, schedule

« Grad student extensions
— Due end of term
— Data sets, suggestions

 Reminder: Midterm Tuesday 10/9
* Problem set 2 out Thursday, due 10/11




Outline

Review from Thursday (affinity, cuts)
Local scale and affinity computation
Hough transform

Generalized Hough transform
— Shape matching applications
Fitting lines

— Least squares

— Incremental fitting, k-means




Real Modality Analysis

Tessellate the space Run the procedure in parallel
with windows




Real Modality Analysis
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The blue data points were traversed by the windows towards the mode
Slide by Y. Ukrainitz & B. Sarel




Mean shift

« Labeling of data points: points visited by
any window converging to same mode get
the same label

« [Comaniciu & Meer, PAMI 2002] : If data
point is visited by multiple diverging mean
shift processes, “majority vote”




Weighted graph representation
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Weight Matrix

(“Affinity matrix”)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003




Images as graphs

Fully-connected graph
* node for every pixel
* link between every pair of pixels, p,q

* similarity ¢, for each link
» similarity is inversely proportional to difference in color and position

Slide by Steve Seitz




Segmentation by Graph Cuts
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Break Graph into Segments
* Delete links that cross between segments

* Easiest to break links that have low similarity
— similar pixels should be in the same segments
— dissimilar pixels should be in different segments




Example
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Distance matrix
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Distance matrix

0.8

0.7k 3

0.6

05k

04+

03F

0.z2r

01 -

D 1 1 1 1
033 04 043 0.3 033 0.6 0.63 0.7 0.73 0.a

for i=1:N
for j=1:N
D(i,j) = 1%~ x;]1?
end
end

N x N matrix




Measuring affinity

« One possibility; @/x.»)= expifi %g (b~ ff )]
* Map distances to similarities, use as edge
weights on graph




Distances—> affinities

D

for i=1:N
for j=1:N
D(i,j) = 1%~ x;{12
end
end

A

c=05

for i=1:N
for j=1:N
A(i,j) = exp(-1/(2*0*2)*||x;- x;1?)
end
end




Measuring affinity

+ One possibility: afv.n)=espi= 1) . (k-

« Essentially, affinity drops off after distance
gets past some threshold

Small sigma: group
only nearby points

affinity
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D= ! Scale affects affinity
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Shuffling the affinity matrix

 Permute the order of the vertices, in terms
of how they are associated with the matrix
rows/cols




Scale affects affinity

Points x,...X;q /

Data points

Affinity matrices




Eigenvectors and graph cuts

A w

WAW =22 w; A; W,




Eigenvectors and graph cuts

« Want a vector w giving the “association”
between each element and a cluster

« Want elements within this cluster to have
strong affinity with one another

. T
e Maximize W Aw

subject to the constraint 7 1
... AW = Aw
Eigenvalue problem : choose the eigenvector

of A with largest eigenvalue




Rayleigh Quotient

Given a symmetric matrix A, find a vector « such that

x” Az is maximum AND

L]
2 _
o [z =1
- T - -
e Find « such that %1—‘%17 is maximum.

The solution to this problem is given by the following theorem:

T . . . . . .
Tﬁ:{?nm reaches its absolute maximum when @ is an eigenvector of A corresponding to the largest

eigenvalue Apaz.




Example
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Eigenvectors and multiple cuts

» Use eigenvectors associated with k largest
eigenvalues as cluster weights

* Or re-solve recursively




Scale affects affinity, number of clusters
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Figure 1: Spectral clustering without local scaling (using the NJW algorithm.) Top row:
When the data incorporates multiple scales standard spectral clustering fails. Note, that
the optimal o for each example (displaved on each figure) turned out to be different. Bottom
row: Clustering results for the top-left point-set with different values of o. This highlights
the high impact o has on the clustering quality. In all the examples, the number of groups
was set manually. The data points were normalized to occupy the [—1,1]? space.

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]




Local scale selection

* Possible solution: choose sigma per point
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[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]




Local scale selection

@ (b)

Figure 2: The effect of local scaling. (a) Input data points. A tight cluster resides within
a background cluster: (b) The affinity between each point and its surrounding neighbors
is indicated by the thickness of the line connecting them. The affinities across clusters are
larger than the affinities within the background cluster. (c) The corresponding visualization
of affinities after local scaling. The affinities across clusters are now significantly lower
than the affinities within any single cluster.

[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]




Local scale selection, synthetic data
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[Self-Tuning Spectral Clustering, L. Zelnik-Manor and P. Perona, NIPS 2004]




Local scale selection, image data

‘D‘ur result (self-tuning) ‘Siﬂgle Scale Segmentation

For this image we got good results using both approaches.

Using local-scaling the high contrast trees as well as the low Only high contrast boundaries are detected.
confrast windows and building boundaries are detected.
a1 \ T "

ina html

Image
segmentation
results, based on
gray-scale
differences alone.

The number of
clusters was set
manually here to
force a large
number of clusters.

Since the scale is
tuned locally for
each pixel we
obtained segments
with both high and
low contrast to the
surrounding.







Fitting

 Want to associate a model with observed
features

[Fig from Marszalek & Schmid, 2007]




Fitting lines

« Given points that belong to a line, what is
the line?

 How many lines are there?
» Which points belong to which lines?




Difficulty of fitting lines

Extraneous data: clutter,
multiple models

Missing data: only some parts
of model are present

Noise in the measured edge
points, orientations

Cost: infeasible to check all ...Enter.
combinations of features by Voting
fitting a model to each schemes
possible subset




Hough transform

« Maps model (pattern) detection problem to
simple peak detection problem

» Record all the structures on which each point
lies, then look for structures that get many votes

« Useful for line fitting




Finding lines in an image
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Connection between image (x,y) and Hough (m,b) spaces
* Aline in the image corresponds to a point in Hough space

» To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx + b

Slide credit: Steve Seitz




Finding lines in an image
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Connection between image (x,y) and Hough (m,b) spaces
* Aline in the image corresponds to a point in Hough space
» To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx + b
« What does a point (x,, Y,) in the image space map to?
— Answer: the solutions of b = -x,m + vy,
— this is a line in Hough space




Finding lines in an image
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Connection between image (x,y) and Hough (m,b) spaces
* Aline in the image corresponds to a point in Hough space
» To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx + b
« What does a point (x,, Y,) in the image space map to?
— Answer: the solutions of b = -x,m + vy,
— this is a line in Hough space




Polar representation for lines

 Issues with (m,b) parameter space:

— Can take on infinite values
— Undefined for vertical lines (x=constant)




Polar representation for lines

[0,0

d: perpendicular distance
from line to origin

e : angle the perpendicular

makes with the x-axis
(0 <= & <= 2)

xcose+ysine+d=0

Point in image space - sinusoid segment in Hough space




Hough transform algorithm

Using the polar parameterization:
d = xcosl + ysinb

H: accumulator array (votes)

Basic Hough transform algorithm 0
1. Initialize H[d, 6]=0
2. for each edge point I[x,y] in the image
for 6 = 0 to 180 // some quantization d

d = xcos + ysind
H[d, 6] += 1
3. Find the value(s) of (d, 6) where H[d, 0] is maximum
4. The detected line in the image is given by d = zcosf + ysint

Hough line demo

Time complexity (in terms of number of votes)?




Example: Hough transform for straight lines

X

Image space Votes
edge coordinates




Example: Hough transform for straight lines

Square : Circle :




Example: Hough transform for straight lines




Example with noise
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Image space Votes
edge coordinates




Example with noise / random points

Image space Votes
edge coordinates




Extensions

Extension 1: Use the image gradient
1. same
2. for each edge point I[x,y] in the image
compute unique (d, 0) based on image gradient at (x,y)
H[d, o] += 1
3. same
4. same

(Reduces degrees of freedom)




Recall: Image gradient

The gradient of an image:
— [9f 9f
VI= [89:’ 8:9]

The gradient points in the direction of most rapid change in intensity

vs = [%.0] ] l LG Vi =34
vi=[0.3]

The gradient direction (orientation of edge normal) is given by:
— -1 (9f %)
6 = tan ( 3y /35
The edge strength is given by the gradient magnitude

2 2
1Vl = /(GD)° + (3)




Extensions

Extension 1: Use the image gradient
1. same
2. for each edge point I[x,y] in the image
compute unique (d, 0) based on image gradient at (x,y)
H[d, o] += 1
3. same
4. same

(Reduces degrees of freedom)

Extension 2

* give more votes for stronger edges (use magnitude of gradient)
Extension 3

» change the sampling of (d, 0) to give more/less resolution
Extension 4

* The same procedure can be used with circles, squares, or any
other shape...




Hough transform for circles

« Circle: center (a,b) and radius r
(X —a)* +(y; —b)* =r"

» For a fixed radius r, unknown gradient direction
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Image space Hough space




Hough transform for circles

« Circle: center (a,b) and radius r

(% ~a)* +(y,~b)* =r?

* For unknown radius r, unknown gradient direction

X

Image space ¢ Hough space




Hough transform for circles

« Circle: center (a,b) and radius r
(% —a)*+(y, ~b)? =’

* For unknown radius r, known gradient direction

B — e
’
0 X

Image space Hough space




Hough transform for circles

For every edge pixel (x,y) :
For each possible radius value r-
6 = gradient direction, from x,y to center
a = x—rcos(0)

b=y + rsin(6)
Hla,b,r] += 1
end

end




Real World Circle Examples

Crosshair indicates results of Hough transform,
bounding box found via motion differencing.




Finding Coins

Original Edges (note noise)




Finding Coins

Penny Quarters




Finding Coins

Note: a different Hough
transform (with separate
accumulators) was used
for each circle radius
(quarters vs. penny).

Coin finding sample images from:
Vivek Kwatra




Hough transform for
parameterized curves

For any curve with analytic form f(x,a) = 0, where

x : edge pixel in image coordinates
a : vector of parameters

1. Initialize accumulator array: H[a] = 0
2.For each edge pixel:

determine each a such that f(x,a) = 0, and
increment Ha]

3. Local maxima in H correspond to curves




Practical tips

Minimize irrelevant tokens first (take edge points
with significant gradient magnitude)

Choose a good grid / discretization (trial and
error)

Vote for neighbors, also (smoothing in
accumulator array)

Utilize direction of edge to reduce free
parameters by 1




Hough transform

* Pros

— All points are processed independently, so
can cope with occlusion

— Some robustness to noise: noise points
unlikely to contribute consistently to any
single bin

— Can detect multiple instances of a model in a
single pass




Hough transform

e Cons

— Complexity of search time increases
exponentially with the number of model
parameters

— Non-target shapes can produce spurious
peaks in parameter space

— Quantization: hard to pick a good grid size

* Too coarse - large votes obtained when too many different
lines correspond to a single bucket

» Too fine = miss lines because some points that are not
exactly collinear cast votes for different buckets




Generalized Hough transform

« What if we still know direction to some
reference point (a), but allow arbitrary
shapes defined by their boundary points?

A
¥\
r=a-p;,
=a-=pP;
S
N
0O : X""* 0 : X""“
Image space Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]




Generalized Hough transform

« For model shape: construct a table storing these
r vectors as function of gradient direction

« To detect model shape: for each edge point
— Index into table with 6

— Use indexed r vectors to vote for (x,y) position
of reference point

* Peak in this Hough space is reference point with
most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.




Generalized Hough transform
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Generalized Hough transform
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Generalized Hough Transform

Find Object Center (XC, yC) given edges (Xi y Vi ¢|)

Create Accumulator Array ~ A(X, Y, )

Initialize: A(XC, yc) =0 ‘V’(XC’ yc) ‘_ "
For each edge point (Xi Vi ¢I) g ‘n\ X

For each r vector entry indexed in table, compute:
_ i i
X, =X, +I, COSx,
y. =Y, +r'sina,
Increment Accumulator: A(X_, Y.) = A(X_, Y, ) +1
Find peaks in A(XC, yc)

With modifications to table can generalize to add scale, orientation —
increases size of accumulator array




Generalizing for scale, orientation

» To search for shapes at arbitrary scale
and orientation

— Add the parameters to the accumulator array
(4d)
— Update table




Example in recognition:
implicit shape model

 Build ‘codebook’ of local appearance for
each category using agglomerative
clustering

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]




Codebook

@ Patch descriptors

E— extracted from lots of

car images
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Example in recognition:
implicit shape model

 Build ‘codebook’ of local appearance for
each category using agglomerative
clustering

* In all training images, match codebook
entries to images with cross correlation
(activate all entries with similarity > t)

* For each codebook entry, store all
positions it was found, relative to object
center

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]




Implicit shape model

« Given test image, extract patches, match
to codebook entry (or entries)

« Cast votes for possible positions of object
center

« Search for maxima in voting space using
Mean-Shift

» (Extract weighted segmentation mask
based on stored masks for the codebook
occurrences)

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]




Implicit shape model

Original Image Interest Points Matched Codebook Probabilistic

\ ] . Entries

Voting Space
(continuous)

Segmentation ﬂ_—
N

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

Fig. 1. The recognition procedure. Image patches are extracted around interest points and com-
g £ I ge | po

pared to the codebook. Matching patches then cast probabilistic votes, which lead to object hy-
potheses that can later be refined. Based on the refined hypotheses, we compute a category-

specilic segmentation.

[B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, 2004]




Grouping and fitting

« Grouping, segmentation: make a compact
representation that merges similar features

— Relevant algorithms: K-means, hierarchical clustering,
Mean Shift, Graph cuts

« Fitting: fit a model to your observed features

— Relevant algorithms: Hough transform for lines,
circles (parameterized curves), generalized Hough
transform for arbitrary boundaries; least squares;

assigning points to lines incrementally or with k-
means




