
Lecture 9: Fitting, Contours

Thursday, Sept 27

Announcements

• Midterm review: 
next Wed Oct 4, 12-1 pm, ENS 31NQ

Last time

• Fitting shape patterns with the Hough 
transform and generalized Hough 
transform

Today

• Fitting lines (brief)
– Least squares
– Incremental fitting, k-means allocation

• RANSAC, robust fitting
• Deformable contours

Line fitting: what is the line?
• Assuming all the points that belong to a particular 

line are known, solve for line parameters that yield 
minimal error.

Forsyth & Ponce 15.2.1

Line fitting: 
which point is on which line?

Two possible strategies:
• Incremental line fitting
• K-means



Incremental line fitting

• Take connected curves of edge points and 
fit lines to runs of points (use gradient 
directions)

Incremental line fitting



If we have occluded edges, will often result in more than 
one fitted line

Allocating points with k-means

• Believe there are k lines, each of which 
generates some subset of the data points

• Best solution would minimize the sum of 
the squared distances from points to their 
assigned lines

• Use k-means algorithm
• Convergence based on size of change in 

lines, whether labels have been flipped.

Allocating points with k-means



Sensitivity to starting point

Outliers
• Outliers can result from

– Data collection error
– Overlooked case for the model chosen

• Squared error terms mean big penalty for 
large errors, can lead to significant bias 

Forsyth & Ponce, Fig 15.7

Outliers affect least squares fit



Outliers affect least squares fit Outliers affect least squares fit

Least squares and error
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xr∑Best model minimizes 
residual error:

Outliers have large 
influence on the fit

model parametersdata point

Least squares and error

• If we are assuming Gaussian additive noise 
corrupts the data points
– Probability of noisy point being within distance 

d of corresponding true point decreases 
rapidly with d

– So, points that are way off are not really 
consistent with Gaussian noise hypothesis, 
model wants to fit to them…

Robustness
• A couple possibilities to handle outliers:

– Give the noise heavier tails
– Search for “inliers”

M-estimators

• Estimate parameters by minimizing modified 
residual expression

• Reflects a noise distribution that does not vanish 
as quickly as Gaussian, i.e., consider outliers 
more likely to occur

• De-emphasizes contribution of distant points
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xr∑
residual error parameter determining 

when function flattens out



Example M-estimator

original

Looks like distance for 
small values,
Like a constant for large 
values

Non-linear optimization, 
must be solved iteratively

Impact of sigma on fitting quality?
Fit with good choice of 

Applying the M-estimator

Applying the M-estimator

too small: error for all points similar

Applying the M-estimator

too large: error about same as least squares 

Scale selection

• Popular choice: at iteration n during 
minimization

RANSAC

• RANdom Sample Consensus
• Approach: we don’t like the impact of 

outliers, so let’s look for “inliers”, and use 
those only.



RANSAC

• Choose a small subset uniformly at 
random

• Fit to that
• Anything that is close to result is signal; all  

others are noise
• Refit
• Do this many times and choose the best 

(best = lowest fitting error)

RANSAC Reference: M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to 
Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981. 

RANSAC Line Fitting Example

Task:
Estimate best line

Slide credit: Jinxiang Chai, CMU

RANSAC Line Fitting Example

Sample two points

RANSAC Line Fitting Example

Fit Line

RANSAC Line Fitting Example

Total number of 
points within a 
threshold of line.



RANSAC Line Fitting Example

Repeat, until get a 
good result

RANSAC Line Fitting Example

Repeat, until get a 
good result

RANSAC Line Fitting Example

Repeat, until get a 
good result

RANSAC application: robust computation

Interest points (Harris 
corners) in left and right 
images
about 500 pts / image
640x480 resolution

Outliers (117)
(t=1.25 pixel; 43 
iterations)

Final inliers (262)

Hartley & Zisserman p. 126

Putative 
correspondences 
(268)
(Best 
match,SSD<20)

Inliers (151)

RANSAC parameters
• Number of samples required (n)

– Absolute minimum will depending on model being fit (lines 
-> 2, circles -> 3, etc) 

• Number of trials (k)
– Need a guess at probability of a random point being “good”
– Choose so that we have high probability of getting one 

sample free from outliers

• Threshold on good fits (t)
– Often trial and error: look at some data fits and estimate 

average deviations

• Number of points that must agree (d)
– Again, use guess of probability of being an outlier; choose 

d so that unlikely to have one in the group

Grouping and fitting
• Grouping, segmentation: make a compact 

representation that merges similar features
– Relevant algorithms: K-means, hierarchical clustering, 

Mean Shift, Graph cuts

• Fitting: fit a model to your observed features
– Relevant algorithms: Hough transform for lines, 

circles (parameterized curves), generalized Hough 
transform for arbitrary boundaries; least squares; 
assigning points to lines incrementally or with k-
means; robust fitting



Today

• Fitting lines (brief)
– Least squares
– Incremental fitting, k-means allocation

• RANSAC, robust fitting
• Deformable contours

Towards object level grouping

Low-level segmentation cannot go this far…
How do we get these kinds of boundaries?

One direction: semi-automatic methods
• Give a good but rough initial boundary 
• Interactively guide boundary placement

Still use image analysis techniques in concert.

Deformable contours

Tracking Heart Ventricles 
(multiple frames)

Deformable contours

Given: initial contour (model) near desired object 

a.k.a. active contours, snakes

(Single frame)

Deformable contours

[Kass, Witkin, Terzopoulos 1987]

Goal: evolve the contour to fit exact object boundary   

a.k.a. active contours, snakes



Deformable contours

initial intermediate final

a.k.a. active contours, snakes
Deformable contours

• Elastic band of arbitrary shape, initially 
located near image contour of interest

• Attracted towards target contour 
depending on intensity gradient

• Iteratively refined

a.k.a. active contours, snakes

Comparison: shape-related methods

• Chamfer matching: given two shapes defined by points, 
measure average distance from one to the other

• (Generalized) Hough transform: given pattern/model 
shape, use oriented edge points to vote for likely position 
of that pattern in new image

• Deformable contours: given initial starting boundary 
and priors on preferred shape types, iteratively adjust 
boundary to also fit observed image

Snake Energy

The total energy of the current snake defined as

exintotal EEE +=

Internal energy encourages smoothness 
or any particular shape

Internal energy incorporates prior
knowledge about object boundary, which 
allows a boundary to be extracted even if 

some image data is missing

External energy encourages curve onto 
image structures (e.g. image edges)

We will want to iteratively minimize this energy for 
a good fit between the deformable contour and 
the target shape in the image

Many of the snakes slides are adapted from Yuri Boykov

Parametric curve representation
• Coordinates given as functions of a parameter 

that varies along the curve
• For example, for a circle with center (0,0):

parametric form:
x = r sin(s)
y = r cos(s)

parameters: 
radius r
angle 0 <= s < 2pi 

(continuous case)

r
(0,0) open curve closed curve

10))(),(()( ≤≤= ssysxsν

Parametric curve representation

(continuous case)

Curves parameterized by arc length, 
the length along the curve



Internal energy

• Bending energy of a continuous curve 

The more the curve 
bends larger this 
energy value is.

Elasticity,
Tension

Stiffness,
Curvature
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Internal 
energy for a 
curve:

External energy

• Measures how well the curve matches the 
image data, locally

• Attracts the curve toward different image 
features
– Edges, lines, etc.

External energy: edge strength

• Image   I(x,y)
• Gradient images             &
• External energy at a point is

• External energy for the curve:

),( yxGx ),( yxGy

)|))((||))((|())(( 22 sGsGsE yxex ννν +−=
(Negative so that minimizing it forces the curve toward strong edges)

∫=
1

0

))(( dssEE exex ν

Snake Energy (continuous form)

e.g. bending energy

e.g. total edge strength 
under curve

exintotal EEE +=
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Discrete approach

discrete image discrete snake 
representation

discrete optimization
(dynamic programming)

Parametric curve representation
(discrete case)

• Represent the curve with a set of n points

10),( −== niyx iii Kν …



Discrete representation

• If the curve is represented by n points

Elasticity,
Tension

Stiffness
Curvature
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Simple elastic curve

• For a curve represented as a set of points 
a simple elastic energy term is

This encourages the closed curve to shrink to a

point (like a very small elastic band)
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Encouraging point spacing

• To stop the curve from shrinking to a point 

– encourages formation of equally spaced 
chains of points
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between pairs of 
points – updated 
at each iteration
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Optional: specify shape prior

• If object is some smooth variation on a 
known shape, use

• where           give points of the basic shape
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Edge strength for external energy

• An external energy term for a (discrete) 
snake based on image edge
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Summary: simple elastic snake

• A simple elastic snake is thus defined by
– A set of n points,
– An internal elastic energy term
– An external edge based energy term

• To use this to locate the outline of an 
object
– Initialize in the vicinity of the object
– Modify the points to minimize the total energy



Energy minimization

• Many algorithms proposed to fit 
deformable contours
– Greedy search
– Gradient descent
– Dynamic programming (for 2d snakes)

Greedy minimization
• For each point, search window around it 

and move to where energy function is 
minimal

• Stop when predefined number of points 
have not changed in last iteration

• Local minimum

75

Synthetic example

(1) (2)

(3) (4)

Dealing with missing data
• The smoothness constraint can deal with 

missing data:

[Figure from Kass et al. 1987]

Relative weighting

α

large α small αmedium α

• weight controls internal elasticity

Dynamic programming (2d snakes)
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∑
−

=
+−− =

1

0
1110 ),,(),,(

n

i
iiiintotal EE ννννν K

…

…



Snake energy: pair-wise interactions 
2
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1v
2v

3v

4v
6v

5v
control points

Energy E is minimized via Dynamic Programming

),(...),(),(),...,,( 1132221121 nnnn vvEvvEvvEvvvE −−+++=
First-order interactions (elasticity)

DP Snakes [Amini, Weymouth, Jain, 1990]

DP Snakes [Amini, Weymouth, Jain, 1990]

2v
3v

4v
6v

5v
control points

Iterate until optimal position for each point is the center of the box, 
i.e. the snake is optimal in the local search space constrained by boxes

Energy E is minimized via Dynamic Programming
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First-order interactions (elasticity)

1v

DP Viterbi Algorithm
• Reuse solutions to subproblems
• Introduce intermediate variables

: lowest total energy for the first k-1 vertices of the snake for a given value of vk

determine 
optimal position 
of predecessor, 
for each 
possible 
position of self
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vs. brute force search ____?

Dynamic Programming  
for a closed snake?
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DP can be applied to optimize an open ended snake 

What about “looped” energy, in the case of a closed snake? 
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Problems with snakes

• Depends on number and spacing of control 
points

• Snake may oversmooth the boundary
• Not trivial to prevent curve self intersecting

• Cannot follow topological changes of objects

Problems with snakes
• May be sensitive to initialization, get stuck 

in local minimum

• Accuracy (and computation time) depends 
on the convergence criteria used in the 
energy minimization technique

Problems with snakes
• External energy: snake does not really “see”

object boundaries in the image unless it gets very 
close to it.

image gradients
are large only directly on the boundary

I∇

Tracking via deformable models 

1. Use final contour/model extracted at frame  
t as an initial solution for frame  t+1

2. Evolve initial contour to fit exact object 
boundary at frame   t+1

3. Repeat steps 1 and 2 for  t = t+1 

Tracking via deformable models
Acknowledgements: Visual Dynamics Group, Dept. Engineering Science, University of Oxford.

Traffic monitoring
Human-computer interaction
Animation
Surveillance
Computer Assisted Diagnosis in medical imaging 

Applications:

Intelligent scissors

[Mortensen & Barrett, SIGGRAPH 1995, CVPR 1999]

Use dynamic programming 
to compute optimal paths 
from every point to the seed 
based on edge-related costs

User interactively selects 
most suitable boundary from 
set of all optimal boundaries 
emanating from a seed point



Snakes vs. scissors

1

2
3

4

Shortest paths on image-based graph connect 
seeds placed on object boundary

Snakes vs. scissors

Given: initial contour (model) near desirable object 

Snakes vs. scissors

Given: initial contour (model) near desirable object 

Goal: evolve the contour to fit exact object boundary   

Coming up

• Stereo
• F&P 10.1, 11
• Trucco & Verri handout


