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Midterm

• Tuesday, Oct 14
• Ok to bring one 8.5x11” page of notes

The grouping problem

Goal: move from array of pixel values to a 
collection of regions, objects, and shapes.

Pixels vs. regions

image clusters on intensity

clusters on colorimage

By grouping pixels 
based on Gestalt-
inspired attributes, 
we can map the 
pixels into a set of 
regions. 

Each region is 
consistent 
according to the 
features and 
similarity metric we 
used to do the 
clustering.

Edges vs. boundaries

Edges useful signal to 
indicate occluding 
boundaries, shape.

Here the raw edge 
output is not so bad…

…but quite often boundaries of interest 
are fragmented, and we have extra 
“clutter” edge points.Images from D. Jacobs

Edges vs. boundaries
Given a model of 
interest, we can 
overcome some of the 
missing and noisy 
edges using fitting
techniques.  

With voting methods 
like the Hough 
transform, detected 
points vote on possible 
model parameters.

Previously, we focused on the case where a line or circle 
was the model…



Today

• Generalized Hough transform
• Deformable contours, a.k.a. snakes

Generalized Hough transform
• What if want to detect arbitrary shapes defined by 

boundary points and a reference point?

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Image space

x a

p1

θ
p2

θ

At each boundary point, 
compute displacement 
vector: r = a – pi.

For a given model shape: 
store these vectors in a 
table indexed by gradient 
orientation θ.

Generalized Hough transform
To detect the model shape in a new image:

• For each edge point

– Index into table with its gradient orientation θ

– Use retrieved r vectors to vote for position of 
reference point

• Peak in this Hough space is reference point with 
most supporting edges

Assuming translation is the only transformation here, i.e., 
orientation and scale are fixed.

Example

model shape Source: L. Lazebnik

Say we’ve already 
stored a table of 
displacement vectors 
as a function of edge 
orientation for this 
model shape.

Example

displacement vectors for model points

Now we want to look at 
some edge points 
detected in a new
image, and vote on the 
position of that shape.

Example

range of voting locations for test point



Example

range of voting locations for test point

Example

votes for points with θ =

Example

displacement vectors for model points

Example

range of voting locations for test point

votes for points with θ =

Example Application in recognition
• Instead of indexing displacements by gradient 

orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 
Learning in Computer Vision 2004

training image

visual codeword with
displacement vectors

Source: L. Lazebnik



Application in recognition
• Instead of indexing displacements by gradient 

orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 
Learning in Computer Vision 2004

test image

Source: L. Lazebnik

Features → shapes, boundaries
• Segment regions (lecture 8)

– cluster pixel-level features, like color, texture, position
– leverage Gestalt properties

• Fitting models (lecture 9)
– explicit parametric models such as lines and circles, or arbitrary 

shapes defined by boundary points and reference point
– voting methods useful to combine grouping of tokens and fitting of 

parameters; e.g. Hough transform

• Background models & foreground detection (lecture 10)

• Detection of deformable contours, and semi-automatic 
segmentation methods (today)
– provide rough initialization nearby true boundary, or
– interactive, iterative process where user guides the boundary 

placement

Deformable contours

Given: initial contour (model) near desired object 

a.k.a. active contours, snakes

(Single frame)

Fig: Y. Boykov[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

Deformable contours

Given: initial contour (model) near desired object 

a.k.a. active contours, snakes

(Single frame)

Fig: Y. Boykov

Goal: evolve the contour to fit exact object boundary   

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

Deformable contours

initial intermediate final

a.k.a. active contours, snakes

Fig: Y. Boykov

Initialize near contour of interest
Iteratively refine: elastic band is adjusted so as to
• be near image positions with high gradients, and
• satisfy shape “preferences” or contour priors

Deformable contours

initial intermediate final

a.k.a. active contours, snakes

Like generalized Hough transform, useful for shape fitting; but

Hough
Fixed model shape
Single voting pass can 
detect multiple instances

Snakes
Prior on shape types, but shape 
iteratively adjusted (deforms)
Requires initialization nearby
One optimization “pass” to fit a 
single contour



Why do we want to fit 
deformable shapes?

• Non-rigid, 
deformable 
objects can 
change their 
shape over 
time, e.g. lips, 
hands.

Figure from Kass et al. 1987

Why do we want to fit 
deformable shapes?

• Some objects have similar basic form but 
some variety in the contour shape.

Deformable contours: intuition

Image from http://www.healthline.com/blogs/exercise_fitness/uploaded_images/HandBand2-795868.JPG Figure from Shapiro & Stockman

Deformable contours

initial intermediate final

a.k.a. active contours, snakes
How is the current contour adjusted to find the new 
contour at each iteration?

•Define a cost function (“energy” function) that says how 
good a possible configuration is.
•Seek next configuration that minimizes that cost 
function.

What are examples of problems with energy functions 
that we have seen previously?

Snakes energy function
The total energy (cost) of the current snake is 
defined as:

externalinternaltotal EEE +=

A good fit between the current deformable contour 
and the target shape in the image will yield a low
value for this cost function.

Internal energy: encourage prior shape preferences: 
e.g., smoothness, elasticity, particular known shape.

External energy (“image” energy): encourage contour to 
fit on places where image structures exist, e.g., edges.

10))(),(()( ≤≤= ssysxsν

Parametric curve representation
(continuous case)

Fig from  Y. Boykov



External energy: intuition
• Measure how well the curve matches the image data
• “Attract” the curve toward different image features

– Edges, lines, etc.

External image energy

Magnitude of gradient
- (Magnitude of gradient)
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How do edges affect “snap” of 
rubber band?

Think of external energy from 
image as gravitational pull 
towards areas of high contrast

External image energy

• Image   I(x,y)
• Gradient images                 and

• External energy at a point v(s) on the curve is

• External energy for the whole curve:
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Internal energy: intuition

Internal energy: intuition

http://www3.imperial.ac.uk/pls/portallive/docs/1/52679.JPG

A priori, we want to favor smooth 
shapes, contours with low curvature, 
contours similar to a known shape, 
etc. to balance what is actually 
observed (i.e., in the gradient image).

Internal energy
For a continuous curve, a common internal energy term is 
the “bending energy”.  
At some point v(s) on the curve, this is:

The more the curve 
bends the larger 
this energy value is.

The weights α and β
dictate how much 
influence each 
component has.

Elasticity,
Tension

Stiffness,
Curvature
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Dealing with missing data

• The smoothness constraint can deal with missing data:

[Figure from Kass et al. 1987]

Total energy
(continuous form)

// bending energy

// total edge strength 
under curve

externalinternaltotal EEE γ+=
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Parametric curve representation
(discrete form)

• Represent the curve with a set of n points
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Discrete energy function:
external term
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Discrete image gradients 
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• If the curve is represented by n points

Discrete energy function:
internal term

• If the curve is represented by n points

Elasticity,
Tension

Stiffness
Curvature
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Penalizing elasticity
• Current elastic energy definition uses a discrete estimate 

of the derivative, and can be re-written as:

Possible problem with this 
definition?

This encourages a closed 
curve to shrink to a cluster.
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Penalizing elasticity

• To stop the curve from shrinking to a cluster of points, 
we can adjust the energy function to be:

• This encourages chains of equally spaced points.

Average distance between pairs of points –
updated at each iteration

Function of the weights

α

large α small αmedium α

• weight controls the penalty for internal elasticity
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Fig from  Y. Boykov

Optional: specify shape prior

• If object is some smooth variation on a 
known shape, we can use a term that 
will penalize deviation from that shape:

where           are the points of the 
known shape.
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Fig from  Y. Boykov

Summary: elastic snake
• A simple elastic snake is defined by

– A set of n points,
– An internal elastic energy term
– An external edge based energy term

• To use this to locate the outline of 
an object
– Initialize in the vicinity of the object
– Modify the points to minimize the total 

energy

How should the weights in the energy function be chosen?

Energy minimization

• Several algorithms proposed to fit deformable 
contours, including methods based on
– Greedy search
– Dynamic programming (for 2d snakes)
– (Gradient descent)

Energy minimization: greedy
• For each point, search window around 

it and move to where energy function 
is minimal
– Typical window size, e.g., 5 x 5 pixels

• Stop when predefined number of 
points have not changed in last 
iteration, or after max number of 
iterations

• Note
– Convergence not guaranteed
– Need decent initialization



Energy minimization: 
dynamic programming (for 2d snakes)
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• Often snake energy can be rewritten as a sum of pair-
wise interaction potentials

• Or sum of triple-interaction potentials.
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Re-writing the above with                      :( )iii yxv ,=

What terms of this sum will a vertex vi affect?

We are 
defining this 
function

iE

1v
2v

3v

4v
6v

5v

With this form of the energy function, we can minimize 
using dynamic programming, with the Viterbi algorithm.

Iterate until optimal position for each point is the center 
of the box, i.e., the snake is optimal in the local search 
space constrained by boxes.

Energy minimization:
dynamic programming

[Amini, Weymouth, Jain, 1990]
Fig from  Y. Boykov
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Main idea: determine optimal position (state) of predecessor, for each 
possible position of self.  Then backtrack from best state for last vertex.
This example: considering first-order interactions, one iteration.
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Energy minimization: dynamic programming

Example adapted from Y. Boykov
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5v

With this form of the energy function, we can minimize 
using dynamic programming, with the Viterbi algorithm.

Iterate until optimal position for each point is the center 
of the box, i.e., the snake is optimal in the local search 
space constrained by boxes.

Energy minimization:
dynamic programming

[Amini, Weymouth, Jain, 1990]
Fig from  Y. Boykov

Energy minimization:
dynamic programming
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DP can be applied to optimize an open ended snake 

For a closed snake, a “loop” is introduced into the total energy.

1ν
nν

),(),(...),(),( 111322211 vvEvvEvvEvvE nnnnn ++++ −−

1ν
nν

2ν

1−nν

3ν 4ν

Work around: 
1) Fix v1 and solve for rest .
2) Fix an intermediate node at 

its position found in (1), 
solve for rest.



Tracking via deformable models 

1. Use final contour/model extracted at frame  
t as an initial solution for frame  t+1

2. Evolve initial contour to fit exact object 
boundary at frame   t+1

3. Repeat, initializing with most recent frame.

Deformable contours

Tracking Heart Ventricles 
(multiple frames)

Tracking via deformable models

Visual Dynamics Group, Dept. Engineering Science, University of Oxford.

Traffic monitoring
Human-computer interaction
Animation
Surveillance
Computer Assisted Diagnosis in medical imaging 

Applications:

Limitations

• May over-smooth the boundary

• Cannot follow topological changes of objects

Limitations
• External energy: snake does not really “see” object 

boundaries in the image unless it gets very close to it.

image gradients
are large only directly on the boundary

I∇

Distance transform
• External image can also be taken from the distance 

transform of the edge image. 

original -gradient distance transform

edges

Value at (x,y) tells how far 
that position is from the 
nearest edge point (or other 
binary mage structure) 
>> help bwdist



Distance transform
• Image reflecting distance to nearest point in point set 

(e.g., edge pixels, or foreground pixels).

4-
connected 
adjacency

8-
connected 
adjacency

Distance transform (1D)

Adapted from D. Huttenlocher

// 0 if j is in P, infinity otherwise

Distance Transform (2D)

Adapted from D. Huttenlocher

Interactive forces

Interactive forces
• An energy function can be altered online based on user 

input – use the cursor to push or pull the initial snake 
away from a point. 

• Modify external energy term to include:
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Nearby points get pushed hardest

What expression could we use to pull points 
towards the cursor position?

Intelligent scissors

[Mortensen & Barrett, SIGGRAPH 1995, CVPR 1999]

Use dynamic programming 
to compute optimal paths 
from every point to the seed 
based on edge-related costs

User interactively selects 
most suitable boundary from 
set of all optimal boundaries 
emanating from a seed point



Snakes: pros and cons

Pros:
• Useful to track and fit non-rigid shapes
• Contour remains connected
• Possible to fill in “subjective” contours
• Flexibility in how energy function is defined, weighted.
Cons:
• Must have decent initialization near true boundary, may 

get stuck in local minimum
• Parameters of energy function must be set well based on 

prior information

Summary: main points
• Deformable shapes and active contours are useful for

– Segmentation: fit or “settle” to boundary in image

– Tracking: previous frame’s estimate serves to initialize the next

• Optimization for snakes: general idea of minimizing a 
cost/energy function
– Can define terms to encourage certain shapes, smoothness, low 

curvature, push/pulls, …
– And can use weights to control relative influence of each 

component cost term.

• Edges / optima in gradients can act as “attraction” force 
for interactive segmentation methods.

• Distance transform definition: efficient map of distances 
to nearest feature of interest. 


