The grouping problem

Goal: move from array of pixel values to a collection of regions, objects, and shapes.

Pixels vs. regions

By grouping pixels based on Gestalt-inspired attributes, we can map the pixels into a set of regions. Each region is consistent according to the features and similarity metric we used to do the clustering.

Edges vs. boundaries

Edges useful signal to indicate occluding boundaries, shape. Here the raw edge output is not so bad…

…but quite often boundaries of interest are fragmented, and we have extra “clutter” edge points.

Given a model of interest, we can overcome some of the missing and noisy edges using fitting techniques. With voting methods like the Hough transform, detected points vote on possible model parameters.

Previously, we focused on the case where a line or circle was the model…
Today

- Generalized Hough transform
- Deformable contours, a.k.a. snakes

Generalized Hough transform

To detect the model shape in a new image:

- For each edge point
 - Index into table with its gradient orientation θ
 - Use retrieved r vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Example

Say we’ve already stored a table of displacement vectors as a function of edge orientation for this model shape.

Example

Now we want to look at some edge points detected in a new image, and vote on the position of that shape.

Example

Range of voting locations for test point.
Example

Example

Example

Example

Application in recognition

• Instead of indexing displacements by gradient orientation, index by “visual codeword”

\begin{itemize}
 \item \textbf{Example}
 \item \textbf{Example}
 \item \textbf{Example}
 \item \textbf{Example}
\end{itemize}

Source: L. Lazebnik

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECV Workshop on Statistical Learning in Computer Vision 2004
Application in recognition

• Instead of indexing displacements by gradient orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Features → shapes, boundaries

• Segment regions (lecture 8)
 – cluster pixel-level features, like color, texture, position
 – leverage Gestalt properties

• Fitting models (lecture 9)
 – explicit parametric models such as lines and circles, or arbitrary shapes defined by boundary points and reference point
 – voting methods useful to combine grouping of tokens and fitting of parameters; e.g. Hough transform

• Background models & foreground detection (lecture 10)
 – Detection of deformable contours, and semi-automatic segmentation methods (today)
 – provide rough initialization nearby true boundary, or
 – interactive, iterative process where user guides the boundary placement

Deformable contours
a.k.a. active contours, snakes

Given: initial contour (model) near desired object

Like generalized Hough transform, useful for shape fitting; but

Hough
Fixed model shape
Single voting pass can detect multiple instances

Snakes
Prior on shape types, but shape iteratively adjusted (deforms)
Requires initialization nearby
One optimization “pass” to fit a single contour
Why do we want to fit deformable shapes?

- Non-rigid, deformable objects can change their shape over time, e.g. lips, hands.

Figure from Kass et al. 1987

Why do we want to fit deformable shapes?

- Some objects have similar basic form but some variety in the contour shape.

Deformable contours: intuition

a.k.a. active contours, snakes

How is the current contour adjusted to find the new contour at each iteration?

- Define a cost function ("energy" function) that says how good a possible configuration is.
- Seek next configuration that minimizes that cost function.

What are examples of problems with energy functions that we have seen previously?

Snakes energy function

The total energy (cost) of the current snake is defined as:

\[E_{\text{total}} = E_{\text{internal}} + E_{\text{external}} \]

Internal energy: encourage prior shape preferences: e.g., smoothness, elasticity, particular known shape.

External energy ("image" energy): encourage contour to fit on places where image structures exist, e.g., edges.

A good fit between the current deformable contour and the target shape in the image will yield a low value for this cost function.

Parametric curve representation (continuous case)

\[\nu(s) = (x(s), y(s)) \quad 0 \leq s \leq 1 \]
External energy: intuition

- Measure how well the curve matches the image data
- "Attract" the curve toward different image features
 - Edges, lines, etc.

External image energy

- Image \(I(x,y) \)
- Gradient images \(G_x(x,y) \) and \(G_y(x,y) \)
- External energy at a point \(v(s) \) on the curve is
 \[
 E_{\text{external}}(v(s)) = -\left(|G_x(v(s))|^2 + |G_y(v(s))|^2 \right)
 \]
- External energy for the whole curve:
 \[
 E_{\text{external}} = \int_0^1 E_{\text{external}}(v(s)) \, ds
 \]

Internal energy: intuition

\textit{A priori}, we want to favor smooth shapes, contours with low curvature, contours similar to a known shape, etc. to balance what is actually observed (i.e., in the gradient image).

Internal energy

For a continuous curve, a common internal energy term is the "bending energy". At some point \(v(s) \) on the curve, this is:

\[
E_{\text{internal}}(v(s)) = \frac{d^2v}{ds^2} + \frac{d^2v}{ds^2}
\]

The more the curve bends \(\rightarrow \) the larger this energy value is.

The weights \(a \) and \(b \) dictate how much influence each component has.

Internal energy for whole curve:

\[
E_{\text{internal}} = \int_0^1 E_{\text{internal}}(v(s)) \, ds
\]
Dealing with missing data

• The smoothness constraint can deal with missing data:

![Figure from Kass et al. 1987](image)

Total energy (continuous form)

\[
E_{\text{total}} = E_{\text{internal}} + \gamma E_{\text{external}}
\]

\[
E_{\text{internal}} = \frac{1}{\gamma} \int_0^1 E_{\text{internal}}(v(s)) \, ds \quad \text{// bending energy}
\]

\[
E_{\text{external}} = \frac{1}{\gamma} \int_0^1 E_{\text{external}}(v(s)) \, ds \quad \text{// total edge strength under curve}
\]

Parametric curve representation (discrete form)

• Represent the curve with a set of \(n \) points

\[
v_i = (x_i, y_i) \quad i = 0 \ldots n-1
\]

Discrete energy function: external term

• If the curve is represented by \(n \) points

\[
E_{\text{external}} = -\sum_{i=0}^{n-1} |G_x(x_i, y_i)|^2 + |G_y(x_i, y_i)|^2
\]

Discrete image gradients

Discrete energy function: internal term

• If the curve is represented by \(n \) points

\[
E_{\text{internal}} = \sum_{i=0}^{n-1} \left[\alpha |v_{i+1} - v_i|^2 + \beta |v_{i+1} - 2v_i + v_i|^2 \right]
\]

Penalizing elasticity

• Current elastic energy definition uses a discrete estimate of the derivative, and can be re-written as:

\[
E_{\text{internal}} = \alpha \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2
\]

Possible problem with this definition?

This encourages a closed curve to shrink to a cluster.
Penalizing elasticity

• To stop the curve from shrinking to a cluster of points, we can adjust the energy function to be:

\[E_{\text{external}} = \alpha \sum_{i=0}^{n-1} \left((x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 + d \right)^2 \]

Average distance between pairs of points – updated at each iteration

• This encourages chains of equally spaced points.

Function of the weights

• \(\alpha \) weight controls the penalty for internal elasticity

\[E_{\text{external}} = \alpha \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 \]

Option: specify shape prior

• If object is some smooth variation on a known shape, we can use a term that will penalize deviation from that shape:

\[E_{\text{internal}} = \alpha \cdot \sum_{i=0}^{n-1} (\tilde{v}_i - \hat{v}_i)^2 \]

where \(\{ \hat{v}_i \} \) are the points of the known shape.

Summary: elastic snake

• A simple elastic snake is defined by:
 – A set of \(n \) points,
 – An internal elastic energy term
 – An external edge based energy term

• To use this to locate the outline of an object:
 – Initialize in the vicinity of the object
 – Modify the points to minimize the total energy

How should the weights in the energy function be chosen?

Energy minimization

• Several algorithms proposed to fit deformable contours, including methods based on
 – Greedy search
 – Dynamic programming (for 2d snakes)
 – (Gradient descent)

Energy minimization: greedy

• For each point, search window around it and move to where energy function is minimal
 – Typical window size, e.g., 5 x 5 pixels

• Stop when predefined number of points have not changed in last iteration, or after max number of iterations

• Note
 – Convergence not guaranteed
 – Need decent initialization
Energy minimization:
dynamic programming (for 2d snakes)

- Often snake energy can be rewritten as a sum of pair-wise interaction potentials

\[E_{\text{total}}(v_0, \ldots, v_n) = \sum_{i=0}^{n-1} E_i(v_i, v_{i+1}) \]

Or sum of triple-interaction potentials.

\[E_{\text{total}}(v_0, \ldots, v_n) = \sum_{i=0}^{n-1} E_i(v_i, v_{i+1}, v_{i+2}) \]

Snake energy: pair-wise interactions

\[E_{\text{total}}(x_0, \ldots, x_{n-1}, y_0, \ldots, y_{n-1}) = -\sum_{i=0}^{n-1} G(x_i, y_i)^2 + |G(x_i, y_i)|^2 + \alpha \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 \]

Re-writing the above with \(v_i = (x_i, y_i) \):

\[E_{\text{total}}(v_0, \ldots, v_n) = -\sum_{i=0}^{n-1} ||G(v_i)||^2 + \alpha \sum_{i=0}^{n-1} ||v_{i+1} - v_i||^2 \]

Energy minimization: dynamic programming

Main idea: determine optimal position (state) of predecessor, for each possible position of self. Then backtrack from best state for last vertex.

This example: considering first-order interactions, one iteration.

\[E_{\text{total}} = E_1(v_1, v_2) + E_2(v_2, v_3) + \ldots + E_n(v_{n-1}, v_n) \]

Iterate until optimal position for each point is the center of the box, i.e., the snake is optimal in the local search space constrained by boxes.

Work around:
1) Fix \(v_1 \) and solve for rest.
2) Fix an intermediate node at its position found in (1), solve for rest.

Energy minimization:
dynamic programming

With this form of the energy function, we can minimize using dynamic programming, with the Viterbi algorithm.

DP can be applied to optimize an open ended snake

\[E_i(v_1, v_2) + E_2(v_2, v_3) + \ldots + E_{n-1}(v_{n-1}, v_n) \]

For a closed snake, a “loop” is introduced into the total energy

\[E_1(v_1, v_2) + E_2(v_2, v_3) + \ldots + E_n(v_{n-1}, v_n) + E_n(v_n, v_1) \]

Work around:
1) Fix \(v_1 \) and solve for rest.
2) Fix an intermediate node at its position found in (1), solve for rest.
Tracking via deformable models

1. Use final contour/model extracted at frame t as an initial solution for frame $t+1$.
2. Evolve initial contour to fit exact object boundary at frame $t+1$.
3. Repeat, initializing with most recent frame.

Deformable contours

Tracking Heart Ventricles (multiple frames)

Visual Dynamics Group, Dept. Engineering Science, University of Oxford

Applications:
- Traffic monitoring
- Human-computer interaction
- Animation
- Surveillance
- Computer Assisted Diagnosis in medical imaging

Limitations

- May over-smooth the boundary
- Cannot follow topological changes of objects

Limitations

• External energy: snake does not really "see" object boundaries in the image unless it gets very close to it.

Distance transform

• External image can also be taken from the distance transform of the edge image.

Value at (x,y) tells how far that position is from the nearest edge point (or other binary image structure).

>> help bwdist
Distance transform

- Image reflecting distance to nearest point in point set (e.g., edge pixels, or foreground pixels).

Distance Transform (1D)

Two pass $O(n)$ algorithm for 1D L_1 norm

1. Initialize: For all j
 \[D[j] \leftarrow 1 \] if $j \in P$, infinity otherwise
2. Forward: For j from 1 up to $n-1$
 \[D[j] \leftarrow \min(D[j], D[j-1] + 1) \]
3. Backward: For j from $n-2$ down to 0
 \[D[j] \leftarrow \min(D[j], D[j+1] + 1) \]

Interactive forces

- An energy function can be altered online based on user input – use the cursor to push or pull the initial snake away from a point.
- Modify external energy term to include:
 \[\sum_{i=0}^{n-1} \left| V_i - p \right|^2 \]

Nearby points get pushed hardest

What expression could we use to pull points towards the cursor position?

Intelligent scissors

Use dynamic programming to compute optimal paths from every point to the seed based on edge-related costs
User interactively selects most suitable boundary from set of all optimal boundaries emanating from a seed point

[Mortensen & Barrett, SIGGRAPH 1995, CVPR 1999]
Snakes: pros and cons

Pros:
• Useful to track and fit non-rigid shapes
• Contour remains connected
• Possible to fill in "subjective" contours
• Flexibility in how energy function is defined, weighted.

Cons:
• Must have decent initialization near true boundary, may get stuck in local minimum
• Parameters of energy function must be set well based on prior information

Summary: main points

• Deformable shapes and active contours are useful for
 – Segmentation: fit or “settle” to boundary in image
 – Tracking: previous frame’s estimate serves to initialize the next
• Optimization for snakes: general idea of minimizing a cost/energy function
 – Can define terms to encourage certain shapes, smoothness, low curvature, push/pulls, …
 – And can use weights to control relative influence of each component cost term.
• Edges / optima in gradients can act as “attraction” force for interactive segmentation methods.
• Distance transform definition: efficient map of distances to nearest feature of interest.