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Today

• Alignment & warping
– 2d transformations
– Forward and inverse image warping
– Constructing mosaics

• Homographies

• Robust fitting with RANSAC

Main questions

T

T

Warping: Given a 
source image and a 
transformation, what 
does the transformed 
output look like?

Alignment: Given two 
images with 
corresponding features, 
what is the 
transformation between 
them?

Motivation: Recognition 

Figures from David Lowe

Motivation: medical image 
registration Motivation: Mosaics

• Getting the whole picture
– Consumer camera: 50˚ x 35˚

Slide from Brown & Lowe 2003



Motivation: Mosaics

• Getting the whole picture
– Consumer camera: 50˚ x 35˚

– Human Vision: 176˚ x 135˚

Slide from Brown & Lowe 2003

Motivation: Mosaics

• Getting the whole picture
– Consumer camera: 50˚ x 35˚

– Human Vision: 176˚ x 135˚

• Panoramic Mosaic        = up to 360 x 180°
Slide from Brown & Lowe 2003

Warping problem
• Given a set of points and a transformation, generate the 

warped image

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

Figure Alyosha Efros

Parametric (global) warping
Examples of parametric warps:

translation rotation aspect

affine
perspective

Source: Alyosha Efros

Parametric (global) warping

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
• Is the same for any point p
• can be described by just a few numbers (parameters)

Let’s represent T as a matrix:
p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Source: Alyosha Efros

Scaling
Scaling a coordinate means multiplying each of its components by 

a scalar
Uniform scaling means this scalar is the same for all components:

× 2

Source: Alyosha Efros



Non-uniform scaling: different scalars per component:

Scaling

X × 2,
Y × 0.5

Source: Alyosha Efros

Scaling

Scaling operation:

Or, in matrix form:
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scaling matrix S

Source: Alyosha Efros

What transformations can be 
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
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*sin*cos'
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2D Shear?
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Source: Alyosha Efros

2D Scaling?
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What transformations can be 
represented with a 2x2 matrix?

Source: Alyosha Efros

2D Mirror about Y axis?
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2D Mirror over (0,0)?
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2D Translation?

y

x

tyy
txx

+=
+=

'
'

NO!

2D Linear Transformations

Only linear 2D transformations can be represented with a 2x2 
matrix.

Linear transformations are combinations of …
• Scale,
• Rotation,
• Shear, and
• Mirror
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Source: Alyosha Efros

Homogeneous Coordinates
Q: How can we represent translation as a 3x3 matrix 

using homogeneous coordinates?

Source: Alyosha Efros
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Homogeneous Coordinates
Q: How can we represent translation as a 3x3 matrix 

using homogeneous coordinates?

A: Using the rightmost column:
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Source: Alyosha Efros

Translation
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Homogeneous Coordinates

Source: Alyosha Efros

Basic 2D Transformations
Basic 2D transformations as 3x3 matrices
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Source: Alyosha Efros

2D Affine Transformations

Affine transformations are combinations of …
• Linear transformations, and
• Translations

Parallel lines remain parallel
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Projective Transformations

Projective transformations:
• Affine transformations, and
• Projective warps

Parallel lines do not necessarily remain parallel
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Today

• Alignment & warping
– 2d transformations
– Forward and inverse image warping
– Constructing mosaics

• Homographies

• Robust fitting with RANSAC



Image warping

Given a coordinate transform and a source image 
f(x,y), how do we compute a transformed 
image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location 
(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location 
(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)
– Known as “splatting”

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)x
y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 
(x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

y’
T-1(x,y)

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)x
y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 
(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear…

Slide from Alyosha Efros, CMU >> help interp2

Bilinear interpolation
Sampling at f(x,y):

Slide from Alyosha Efros, CMU



Alignment problem
• We have previously considered how to fit a model to 

image evidence
– e.g., a line to edge points, or a snake to a deforming contour

• In alignment, we will fit the parameters of some 
transformation according to a set of matching feature 
pairs (“correspondences”).

T

xi

xi

'

Image alignment

• Two broad approaches:
– Direct (pixel-based) alignment

• Search for alignment where most pixels agree

– Feature-based alignment
• Search for alignment where extracted features agree

• Can be verified using pixel-based alignment
Source: L. Lazebnik

Fitting an affine transformation

Figures from David Lowe, ICCV 1999

Affine  model approximates perspective projection of 
planar objects.

Fitting an affine transformation
• Assuming we know the correspondences, how do we 

get the transformation?

),( ii yx ′′
),( ii yx

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
′
′

2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i

An aside: Least Squares Example
Say we have a set of data points (X1,X1’), (X2,X2’), 

(X3,X3’), etc.  (e.g. person’s height vs. weight)
We want a nice compact formula (a line) to predict X’s 

from Xs:  Xa + b = X’
We want to find a and b
How many (X,X’) pairs do we need?

What if the data is noisy?
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Source: Alyosha Efros

Fitting an affine transformation
• Assuming we know the correspondences, how do we 

get the transformation?
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Fitting an affine transformation

• How many matches (correspondence pairs) do we 
need to solve for the transformation parameters?

• Once we have solved for the parameters, how do we 
compute the coordinates of the corresponding point 
for                      ? 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

L

L

L

L

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

),( newnew yx

What are the correspondences?

?

• Compare content in local patches, find best matches.
e.g., simplest approach: scan with template, and compute SSD 
or  correlation between list of pixel intensities in the patch

• Later in the course: how to select regions according to 
the geometric changes, and more robust descriptors.

Panoramas

Obtain a wider angle view by combining multiple images.

im
age from

 S. Seitz

. . .

How to stitch together a 
panorama?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and 
first

– Transform the second image to overlap with the first
– Blend the two together to create a mosaic
– (If there are more images, repeat)

• …but wait, why should this work at all?
– What about the 3D geometry of the scene?
– Why aren’t we using it?

Source: Steve Seitz

Panoramas: generating synthetic views

real
camera

synthetic
camera

Can generate any synthetic camera view
as long as it has the same center of projection!

Source: Alyosha Efros

mosaic PP

Image reprojection

The mosaic has a natural interpretation in 3D
• The images are reprojected onto a common plane
• The mosaic is formed on this plane
• Mosaic is a synthetic wide-angle camera

Source: Steve Seitz



Homography
How to relate two images from the same camera center?

– how to map a pixel from PP1 to PP2?

Think of it as a 2D image warp from one image to another.
A projective transform is a mapping between any two PPs

with the same center of projection
• rectangle should map to arbitrary quadrilateral 
• parallel lines aren’t
• but must preserve straight lines

called Homography
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Source: Alyosha Efros

Homography
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To apply a given homography H
• Compute p’ = Hp   (regular matrix multiply)
• Convert p’ from homogeneous to  image 

coordinates

Homography
( )11, yx ( )11, yx ′′

To compute the homography given pairs of corresponding 
points in the images, we need to set up an equation where 
the parameters of H are the unknowns…

( )22 , yx ′′( )22 , yx

…

…

( )nn yx , ( )nn yx ′′ ,

Solving for homographies

Can set scale factor i=1. So, there are 8 unknowns.
Set up a system of linear equations:

Ah = b
where vector of unknowns h = [a,b,c,d,e,f,g,h]T

Need at least 8 eqs, but the more the better…
Solve for h. If overconstrained, solve using least-squares: 

>> help lmdivide
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Recap: How to stitch together a 
panorama?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and 
first

– Transform the second image to overlap with the first
– Blend the two together to create a mosaic
– (If there are more images, repeat)

Source: Steve Seitz

Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to

Source: Steve Seitz



Image rectification

p
p’

Analysing patterns and shapes

Homography

Automatically 
rectified floor

The floor (enlarged)

What is the shape of the b/w floor pattern?

Slide from Criminisi

From Martin Kemp The Science of Art
(manual reconstruction)
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Analysing patterns and shapes

Slide from Criminisi

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Analysing patterns and shapes

What is the (complicated)
shape of the floor pattern?

Slide from Criminisi

From Martin Kemp, The Science of Art
(manual reconstruction)

Automatic
rectification

Analysing patterns and shapes

Slide from Criminisi

changing camera center
Does it still work? synthetic PP

PP1

PP2

Source: Alyosha Efros



Planar scene (or far away)

PP3 is a projection plane of both centers of projection, 
so we are OK!

This is how big aerial photographs are made

PP1

PP3

PP2

Source: Alyosha Efros

Today

• Alignment & warping
– 2d transformations
– Forward and inverse image warping
– Constructing mosaics

• Homographies

• Robust fitting with RANSAC

Outliers
• Outliers can hurt the quality of our parameter 

estimates, e.g., 
– an erroneous pair of matching points from two images
– an edge point that is noise, or doesn’t belong to the 

line we are fitting.

Example: least squares line fitting
• Assuming all the points that belong to a particular line are 

known



Outliers affect least squares fit Outliers affect least squares fit

RANSAC

• RANdom Sample Consensus

• Approach: we want to avoid the impact of 
outliers, so let’s look for “inliers”, and use those 
only.

• Intuition: if an outlier is chosen to compute the 
current fit, then the resulting line won’t have 
much support from rest of the points.

RANSAC
• RANSAC loop:

1. Randomly select a seed group of points on which to 
base transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute 
least-squares estimate of transformation on all of the 
inliers

• Keep the transformation with the largest number of 
inliers

RANSAC Line Fitting Example

Task:
Estimate best line

Slide credit: Jinxiang Chai, CMU

RANSAC Line Fitting Example

Sample two points



RANSAC Line Fitting Example

Fit Line

RANSAC Line Fitting Example

Total number of 
points within a 
threshold of line.

RANSAC Line Fitting Example

Repeat, until get a 
good result

RANSAC Line Fitting Example

Repeat, until get a 
good result

RANSAC Line Fitting Example

Repeat, until get a 
good result

RANSAC example: Translation

Putative matches

Source: Rick Szeliski



RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Find “average” translation vector

Feature-based alignment outline

Source: L. Lazebnik

Feature-based alignment outline

• Extract features

Source: L. Lazebnik

Feature-based alignment outline

• Extract features
• Compute putative matches

Source: L. Lazebnik



Feature-based alignment outline

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative 
matches that are related by T)

Source: L. Lazebnik

Feature-based alignment outline

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative 
matches that are related by T)

• Verify transformation (search for other matches consistent 
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Today

• Alignment & warping
– 2d transformations
– Forward and inverse image warping
– Constructing mosaics

• Homographies

• Robust fitting with RANSAC

• Midterm on Tuesday in class


