Thursday, Oct 16

Today

- Pset1 examples
- Midterm solutions
- Homography recap, computing mosaics

Weak perspective

- Approximation: treat magnification as constant
- Assumes scene depth << average distance to camera

 Write matrix equation that relates world point (X,Y,Z) to its image point according to weak perspective.

Which is more suited for weak perspective projection model?

Color matching experiment 2

Color matching experiment 2

[5, 12, 5, 9, 8, 9, 5, 5, 12, 12, 5, ?]

K-means

- Suppose we are using *k*-means clustering to group pixels in a (tiny) image based on their intensity. The image's intensities are: 5, 10, 3, 20, 9, 0. We pick the initial centers randomly to be 0 and 9, and set the number of clusters *k*=2.
- Cluster membership?
- New cluster centers?

 Affinity score that will discourage intervening contours between pixels.

Hough transform for circles

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r, known gradient direction

Midterm

- Average overall: 83.8 (+/- 17.5)
- Undergrad average: 79 (+/- 18)
- Grad average: 97 (+/- 6)
- Question 5 treated as extra credit (8 pts possible)
- 100+ = A+, 95:99 = A, 90:94 = A-
- 85:89 = B+, 80:84 = B, 75:79 = B-
- 70:74 = C+, 65:69 = C, 60:64 = C-
- 50:60 = D

Mosaics: main steps

- Collect correspondences (manually)
- Solve for homography matrix H
- Warp content from one image frame to the other to combine: say im1 into im2 reference frame

• Overlay im2 content onto the warped im1 content.

- ginput to collect clicked points
- What kinds of images to choose as input?

To **compute** the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of **H** are the unknowns...

Solving for homographies

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Can set scale factor *i*=1. So, there are 8 unknowns. Set up a system of linear equations:

Ah = b

where vector of unknowns h = [a,b,c,d,e,f,g,h]^T Need at least 8 eqs, but the more the better... Solve for h. If overconstrained, solve using least-squares: $\min \lVert Ah - b \rVert^2$

>> help Imdivide

Mosaics: main steps

- Collect correspondences (manually)
- Solve for homography matrix H
 - Least squares solution
- Warp content from one image frame to the other to combine: say im1 into im2 reference frame
 - Determine bounds of the new combined image
 - Where will the corners of im1 fall in im2's coordinate frame?
 - We will attempt to lookup colors for any of these positions we can get from im1.:meshgrid
 - Compute coordinates in im1's reference frame (via homography) for all points in that range: $\rm H^{\text{-}1}$
 - Lookup all colors for all these positions from im1
 - Inverse warp:interp2 (watch for nans:isnan)
- Overlay im2 content onto the warped im1 content.
 - Careful about new bounds of the output image: minx, miny

Mosaics: main steps

- Collect correspondences (manually)
- · Solve for homography matrix H
 - Least squares solution
- Warp content from one image frame to the other to combine: say im1 into im2 reference frame
 - Determine bounds of the new combined image
 - Where will the corners of im1 fall in im2's coordinate frame?
 - We will attempt to lookup colors for any of these positions we can get from im1.: meshgrid
 - Compute coordinates in im1's reference frame (via homography) for all points in that range: H-1
 - Lookup all colors for all these positions from im1
 - Inverse warp:interp2 (watch for nans:isnan)
- Overlay im2 content onto the warped im1 content.
 - Careful about new bounds of the output image: minx, miny

Mosaics: main steps

- Collect correspondences (manually)
- Solve for homography matrix H
 - Least squares solution
- Warp content from one image frame to the other to combine: say im1 into im2 reference frame
 - Determine bounds of the new combined image
 - Where will the corners of im1 fall in im2's coordinate frame?
 - We will attempt to lookup colors for any of these positions we can get from im1.:meshgrid
 - Compute coordinates in im1's reference frame (via homography) for all points in that range: H⁻¹
 - Lookup all colors for all these positions from im1
 - Inverse warp:interp2 (watch for nans:isnan)
- Overlay im2 content onto the warped im1 content.
 - Careful about new bounds of the output image: minx, miny

Mosaics: main steps

- Collect correspondences (manually)
- Solve for homography matrix H
 - Least squares solution
- Warp content from one image frame to the other to combine: say im1 into im2 reference frame
 - Determine bounds of the new combined image
 - Where will the corners of im1 fall in im2's coordinate frame?
 - We will attempt to lookup colors for any of these positions we can get from im1.: meshgrid
 - Compute coordinates in im1's reference frame (via homography) for all points in that range: H⁻¹
 - Lookup all colors for all these positions from im1
 - Inverse warp:interp2 (watch for nans:isnan)
- Overlay im2 content onto the warped im1 content.
 - Careful about new bounds of the output image: minx, miny

RANSAC for estimating homography

RANSAC loop:

- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute inliers where $SSD(p_i', Hp_{ij} < \varepsilon)$
- 4. Keep largest set of inliers
- Re-compute least-squares H estimate on all of the inliers

Sanity checks

- Click on corresponding points, solve for H, then check that when you plot the transformed points from one image in the other, they land on the right features
- Do the same, but with the corners of one image.

Misc matlab (from pset)

- Watch for index conventions: ginput gives back (x,y), while matrices are indexed in y,x order
- uint8's vs. doubles; give interp2 a matrix of doubles

Possible interface

Main script

H = computeH(pts1, pts2)

[imlwarped, minx, miny] =
warpImage(iml, H, im2h, im2w)

- For Tuesday:
 - Read F&P 10.1.1-10.1.2, F&P 11.1-11.3
 - [T&V Chapter 7]