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Some Pset 2 results

Correspondences, matching for stereo
— A couple stereo applications

Camera calibration

Weak calibration

— Fundamental matrix

— 8-point algorithm
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Epipolar constraint
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- Potential matches for p have to lie on the corresponding
epipolar line I'.

- Potential matches for p’ have to lie on the corresponding
epipolar line I.

Source: M. Pollefeys

Correspondence problem

Multiple match

® Hypathesis 1
.. . o Hypothesis 2 hypotheses

" npomesis s Satisfy epipolar
constraint, but
which is correct?

- "
L -

o Left image

Correspondence problem

» Beyond the hard constraint of epipolar geometry, there
are “soft” constraints to help identify corresponding
points

— Similarity

— Uniqueness

— Ordering

— Disparity gradient

* To find matches in the image pair, we will assume
— Most scene points visible from both views
— Image regions for the matches are similar in appearance

Figure from Gee & Cipolla 1999

Correspondence problem

Farallel camera example — epipolar lines are comespending rasters
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Source: Andrew Zisserman




Intensity profiles
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* Clear correspondence between intensities, but also noise and ambiguity

Source: Andrew Zisserman
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Correspondence problem

Neighborhood of corresponding points are similar
in intensity patterns.

Source: Andrew Zisserman

Normalized cross correlation

subtract mean: A + /

‘Write regions as vectors

A—a B—=b

a.b

NCC = =
|af[b]
b
-1<NCC<1

vector a vector b

Source: Andrew Zisserman

Correlation-based window matching

left image band (x)

right image band (x)

cross
correlation

disparity = x'- x

Source: Andrew Zisserman

Dense correspondence search

For each epipolar line
For each pixel / window in the left image

« compare with every pixel / window on same epipolar line in right
image
« pick position with minimum match cost (e.g., SSD, correlation)

Adapted from Li Zhang

Textureless regions
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target region
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Source: Andrew Zisserman




Effect of window size
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Effect of window size

Source: Andrew Zisserman

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.

Foreshortening effects

fronto-parallel surface slanting surface
imaged length the same imaged lengths differ

Source:- Andrew Zisserman

Figures from Li Zhang

Sparse correspondence search
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« Restrict search to sparse set of detected features

« Rather than pixel values (or lists of pixel values) use feature
descriptor and an associated feature distance

« Still narrow search further by epipolar geometry

Correspondence problem

» Beyond the hard constraint of epipolar geometry, there
are “soft” constraints to help identify corresponding
points

— Similarity
—_Uniqueness

— Ordering

— Disparity gradient

Uniqueness

« For opaque objects, up to one match in right image for
every point in left image

Violates uniqueness
constraint

o Left image Right image o/

Figure from Gee &

Cipolla 1999




Ordering constraint

» Points on same surface (opaque object) will be in same
order in both views

Figure from Gee &
Cipolla 1999
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Ordering constraint

* Won't always hold, e.g. consider transparent object, or
an occluding surface

ieisten crder
earant
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Figures from Forsyth & Ponce

Disparity gradient

» Assume piecewise continuous surface, so want disparity
estimates to be locally smooth

Left image Right image
Epipolar
line

* o °© .___‘;’__”h')_"'-o_
27

Given matches e and o, point © in the left image
must match point 1 in the right image. Point 2
would exceed the disparity gradient limit,

Figure from Gee &
Cipolla 1999

Scanline stereo

« Try to coherently match pixels on the entire scanline
« Different scanlines are still optimized independently

Left image Right image

intensity
’
i

“Shortest paths” for scan-line stereo
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Can be implemented with dynamic programming
Ohta & Kanade '85, Cox et al. ‘96

Slide credit: Y. Boykov

Coherent stereo on 2D grid

« Scanline stereo generates streaking artifacts

« Can’t use dynamic programming to find spatially
coherent disparities/ correspondences on a 2D grid
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Stereo matching as energy minimization

|E =a Edala(lll |2' D)+ﬂEsmooth(D)|

Eu = . W,(0)~W, (i + D())| |Ewwoan = 2,2(D()~D(J))

i neighbors i, j

Stereo matching as energy minimization

|E =a Edata(llv Izv D)+ﬂEsmooth(D)|

Equa = 2 (W, () ~W, (i + D(i))’

i neighbors i, j

Esmuoth = Zp(D(I)_D(J))

» Energy functions of this form can be minimized using
graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization
via Graph Cuts, PAMI 2001
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Recap: stereo with calibrated cameras

» Image pair
» Detect some features

» Compute E from given R
and T

» Match features using the
epipolar and other et Rt
constraints

» Triangulate for 3d structure

range map

left image. right image

Z-keying for virtual reality

* Merge synthetic and real images given depth maps

Figure 1° A sihama of the 2 key methad

Kanade et al., CMU, 1995




Z-keying for virtual reality

Kanade et al., CMU, 1995

http://www.cs.cmu.edu/afs/cs/project/stereo-machine/www/z-key.html
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An audio camera & epipolar geometry

Spherical microphone array

Adam O' Donovan, Ramani Duraiswami and Jan Neumann
Microphone Arrays as Generalized Cameras for Integrated Audio
Visual Processing, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Minneapolis, 2007

First without beamforming

* Adam O' Donovan, Ramani Duraiswami and Jan Neumann.
Microphone Arrays as Generalized Cameras for Integrated Audio
Visual Processing, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Minneapolis, 2007

Uncalibrated case

« What if we don’t know the camera parameters?

Today

* Some Pset 2 results

« Correspondences, matching for stereo

— Acouple stereo applications

- Camera calibration |

» Weak calibration
— Fundamental matrix

— 8-point algorithm

Perspective projection

Focal f :
length - ¥

. .

] Optical
Camera gyjs
frame

(x.v.2) —){_f-{._f"?)

Scene point —* Image coordinates

Thus far, in camera’s reference frame only.
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Camera parameters

» Extrinsic: location and orientation of camera frame
with respect to reference frame

« Intrinsic: how to map pixel coordinates to image plane
coordinates

Reference
el S

Camera 1
frame
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Extrinsic camera parameters

P.=R(P,-T)
I !

Camera reference  \\orld reference
frame frame

P.{X,Y,z)

Camera parameters

» Extrinsic: location and orientation of camera frame with
respect to reference frame

« Intrinsic: how to map pixel coordinates to image
plane coordinates

Reference
el S

ol

‘ i Camera 1
frame

Intrinsic camera parameters

« Ignoring any geometric distortions from optics, we can
describe them by:

X= _(Xim o 0x)sx
y= _(yim _Oy)Sy

N

Coordinates of

Coordinates of Coordinates of  Effective size of a

Camera parameters
* We know that in terms of camera reference frame:
X Y = -
X = f_ Y= f_ and PC R(PW -1I'-)
Z z P, =(X,Y,Z)

» Substituting previous eqns describing intrinsic and extrinsic
parameters, can relate pixels coordinates to world points:

_(Xim _Ox)sx =f Rl.(PW _T)
R;-(P,-T) R,= Row i of
R (P T) rotation matrix
—(v. —0.)s. = f%
O =0,)8, = F =2

projected point in image point in image center in pixel (mm)
camera reference pixel units pixel units
frame
Projection matrix
point in camera
coordinates
* This can be rewritten as a Xw
matrix product using WXim|  _ M. M Y
homogeneous coordinates: || WYim int Text | _W
w ZW
1
Xim = Wi, / W
Yim = Wi /W
r 7 r, -R,'T
—fls, 0 o 11 12 13 1
— d X T
Min= 0 -f/s, q, Mg P 1P e R, T
T
0 0 1 [ r, , R, T

11
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Calibrating a camera

* Compute intrinsic and extrinsic
parameters using observed camera
data

Main idea
» Place “calibration object” with known
geometry in the scene

» Get correspondences

» Solve for mapping from scene to
image: estimate M=M, My “

The Opti-CAL Calibration Target knage

Projection matrix

PW in homog|
~
» This can be rewritten Xu
as a matrix product xx_‘m = My Moy | Yur
using homogeneous W Z,
coordinates: M 1

product M is single

M1 ) Pw projection matrix
X = .
m M. -P encoding both
3w extrinsic and intrinsic
B M ) pw parameters
Yim = M. P Let M, be row
3w i of matrix M

Estimating the projection matrix

For a given feature point

—7M1.EW —’O:(Ml_ximMS)'Pw

im

_M3. w
_MZ.PW
Yim = M,-P, — O:(Mz_yimMs)'Pw

Estimating the projection matrix

0=(M,-x,M;)-P, |  Expanding this first equation, we
0=M,-¥nM3)-P,|  have:

Xw

[mu M2 M3 m14]—Xim[m31 M3z  Ma33 m34]* Yo =0

Estimating the projection matrix

0=(M,—x,M;)-P,
0=(M2 - ylmM3)'Pw

X X

0 0 =X Xy —%Yy —XnZy —Xg)| " ={0
w Yo Zy Yin X = YinYu = Yinw ~ Yim g

Estimating the projection matrix

This is true for every feature point, so we can stack up n
observed image features and their associated 3d points
in single equation: Pm =0

P m

[

XOYO 70 1 0 0 0 0—xOXO _yxOyO _ydz0 _yo
0 0 0 0X®y®zoq ,y'(bx?n ,y‘(mnyv'u) ,y‘(ml)zfl) ,y‘(ml)
w w w im w im W im w im

XO YOz 1 0 0 0 0-xOX® —xOY® _x0ZO 0

00 00Xz 1oyx yDv bzl b

Solve for mjs (the calibration information)
[F&P Section 3.1]
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Summary: camera calibration

» Associate image points with scene points on object with
known geometry

» Use together with perspective projection relationship to
estimate projection matrix

» (Can also solve for explicit parameters themselves)

When would we calibrate this way?

* Makes sense when geometry of system is not going to
change over time

* ...When would it change?

Weak calibration

* Want to estimate world geometry without requiring
calibrated cameras
— Archival videos
— Photos from multiple unrelated users
— Dynamic camera system

* Main idea:
— Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated
cameras

Uncalibrated case

For a given D=M _ Camera
camera: p=MpP coordinates

So, for two cameras (left and right):

p left i left
Camera " 1 () M left,int P e )
" Image pixel
coordinates .
1 . coordinates

p(right) =M right,intp(right)

Internal calibration
matrices, one per
camera

Uncalibrated case:
fundamental matrix

— 71 n

P ety = Mg inP e
MLl B

P i = M gt ine Prighe)

p(right)TEp(Ieft) =0

From before, the
essential matrix E.

(M ;ilght,intﬁright )T E(M ;;t,intﬁleft ) =0

E;l;ght (M ;i;ht,intEM Izelft,int )ﬁleft =0
— ﬂ—/

ﬁljl;ght I:ﬁleft =0
!

Fundamental matrix

Fundamental matrix

« Relates pixel coordinates in the two views

* More general form than essential matrix: we remove
need to know intrinsic parameters

« If we estimate fundamental matrix from correspondences
in pixel coordinates, can reconstruct epipolar geometry
without intrinsic or extrinsic parameters

13



Computing F from correspondences

F = (Mg EM i)

right,int

ﬁrTight Fﬁeﬁ =0

* Cameras are uncalibrated: we don’t know E or left or
right M;; matrices
« Estimate F from 8+ point correspondences.

10/24/2008

Computing F from correspondences

Each point T o
correspondence p,ightFpmﬁ = 0
generates one

constraint on F

. ) fo fie fia| [ ul
\u' v 1| a1 fa2 faa||v| =0

far fa2 fas || 1] fu
fl'_’
fl.'l
Collect n of these I[rr'.rr. wjyy ) vig vy vy wg |‘| fan
constraints fu|=0
fo
fa
Solve for f , vector of parameters. ;11

Stereo pipeline with weak calibration

» So, where to start with uncalibrated cameras?

— Need to find fundamental matrix F and the correspondences
(pairs of points (U',v') < (u,v)).

e

« 1) Find interest points in image (more on this later)
« 2) Compute correspondences
» 3) Compute epipolar geometry

* 4)Refine
Exame\e from Andrew Zisserman

Stereo pipeline with weak calibration

1) Find interest points (next week)

Stereo pipeline with weak calibration

2) Match points only using proximity

Putative matches based on
correlation search

* Many wrong matches (10-50%), but enough to compute F

14
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RANSAC for robust estimation of Putative matches based on
the fundamental matrix correlation search

» Select random sample of correspondences
» Compute F using them
— This determines epipolar constraint

» Evaluate amount of support — inliers within threshold
distance of epipolar line

» Choose F with most support (inliers)

+ Many wrong matches (10-50%), but enough to compute F

Pruned matches

+ Correspondences consistent with epipolar geometry
« Resulting epipolar geometry

Next

* How to find interest points?

» How to describe local neighborhoods more
robustly than with a list of pixel intensities?

15



