

Today

- Some more Pset 2 results
- Pset 2 returned, pick up solutions
- Pset 3 is posted, due 11/11
- · Local invariant features
 - Detection of interest points
 - Harris corner detection
 - Scale invariant detection: LoG / DoG
 - Description of local patches
 - SIFT : Histograms of oriented gradients

Local features and alignment

[Slide credit: Darya Frolova and Denis Simakov]

Local features and alignment

· Detect feature points in both images

Local features and alignment

- · Detect feature points in both images
- Find corresponding pairs

Local features and alignment

- · Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Local features and alignment

- Problem 1:
 - Detect the same point independently in both images

no chance to match

We need a repeatable detector

Local features and alignment

- Problem 2:
 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor

Similarly, the first step in our stereo pipeline using weak calibration was to find interest points,...

Local features and stereo matching

... and we let the surrounding pixels in a neighborhood patch serve as the local descriptor, which we can compare with correlation

We want a sparse set of reliably detectable interest points.

Local features and stereo matching

.. and we let the surrounding pixels in a neighborhood patch serve as the local descriptor, which we can compare with correlation

Putative matches

Local features and stereo matching

- Patches of intensity have limited robustness for matching across different views
- Consider the case where we have a wide baseline separating the two views

J. Matas, O. Chum, M. Urban, T. Pajdla. Robust Wide Baseline Stereo From Maximally Stable Extremal Regions, BMVC 2002

Local features and stereo matching

- Patches of intensity have limited robustness for matching across different views
- Consider the case where we have a wide baseline separating the two views

. Matas. O. Chum. M. Urban. T. Paidla. Robust Wide Baseline Stereo From Maximally Stable Extremal Regions. BMVC 2002

 What would we like our local features to be invariant to?

And other nuisances...

- Noise
- Blur
- · Compression artifacts
- · Appearance variation for a category

Invariant local features

Subset of local feature types designed to be invariant to common geometric and photometric transformations.

Basic steps:

- 1) Detect distinctive interest points
- 2) Extract invariant descriptors

Figure: David Low

Main questions

- Where will the interest points come from?
 - What are salient features that we'll detect in multiple views?
- How to describe a local region?
- How to establish correspondences, i.e., compute matches?

Finding Corners

Key property: in the region around a corner, image gradient has two or more dominant directions

Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147--151.

Source: Lana Lazeho

What does this matrix reveal? First, consider an axis-aligned corner:

What does this matrix reveal?

First, consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means dominant gradient directions align with x or y axis

If either λ is close to 0, then this is **not** a corner, so look for locations where both are large.

What if we have a corner that is not aligned with the image axes?

Slide credit: David Jacobs

• How can we detect **scale invariant** interest points?

Automatic scale selection • Solution: - Design a function on the region, which is "scale invariant" (the same for corresponding regions, even if they are at different scales) Example: average intensity. For corresponding regions (even of different sizes) it will be the same. - For a point in one image, we can consider it as a function of region size (patch width) Image 1 scale = 1/2 region size region size

- n Detect maxima of difference-of-Gaussian (DoG) in scale space
- n Then reject points with low contrast (threshold)
- n Eliminate edge responses

Example of keypoint detection

(a) 233x189 image (b) 832 DOG extrema (c) 729 left after peak value threshold (d) 536 left after testing ratio of principle curvatures (removing

Scale Invariant Detection: Summary

- · Given: two images of the same scene with a large scale difference between them
- Goal: find the same interest points independently in each image
- Solution: search for maxima of suitable functions in scale and in space (over the image)

Main questions

- · Where will the interest points come from?
 - What are salient features that we'll detect in multiple views?
- How to describe a local region?
- How to establish correspondences, i.e., compute matches?

Local descriptors

- We know how to detect pointsNext question:

How to describe them for matching?

Point descriptor should be

- 1. Invariant
- 2. Distinctive

Local descriptors

- · Simplest descriptor: list of intensities within a patch.
- · What is this going to be invariant to?

Rotation Invariant Descriptors

 Harris corner response measure: depends only on the eigenvalues of the matrix M

Rotation Invariant Descriptors

Find local orientation
 Dominant direction of gradient for the image patch

Rotate patch according to this angle
 This puts the patches into a canonical orientation.

Rotation Invariant Descriptors

Image from Matthew Brown

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
- Sometimes even day vs. night (below)
 Fast and efficient—can run in real time
- Lots of code available
 - LOTS OT CODE aVailable

 http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known implementations of SIF

Working with SIFT descriptors

- · One image yields:
 - n 128-dimensional descriptors: each one is a histogram of the gradient orientations within a patch
 - [n x 128 matrix]
 - n scale parameters specifying the size of each patch
 - [n x 1 vector]
 - n orientation parameters specifying the angle of the patch
 - [n x 1 vector]
 - n 2d points giving positions of the patches
 - [n x 2 matrix]

Main questions

- · Where will the interest points come from?
 - What are salient features that we'll detect in multiple views?
- How to describe a local region?
- How to establish correspondences, i.e., compute matches?

We stopped here on Tuesday, to be continued Thursday

Summary

- · Interest point detection
 - Harris corner detector
 - Laplacian of Gaussian: scale selection
- · Invariant descriptors
 - Rotation according to dominant gradient direction
 - Histograms for robustness to small shifts and translations
 - SIFT

Next

- · Recognition & image retrieval
- · Thursday:
 - Bag of words models and inverted file indexing for images
 - Read
 - Video Google paper by Sivic & Zisserman
 - Excerpt on vector models posted on Blackboard
- Pset 3 is posted, due Tuesday 11/11.

