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Hypothesize and test: main idea

+ Given model of object
* New image: hypothesize object identity and pose
* Render object in camera

» Compare rendering to actual image: if close, good
hypothesis.
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Model

Pose consistency / alignment

» Key idea:
— If we find good correspondences for a small set of
features, it is easy to obtain correspondences for a
much larger set.

+ Strategy:
— Generate hypothesis transformation using small
numbers of correspondences

— Backproject: Transform all model features to image
features

— Verify: see if for this alignment the model and image
agree
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Today

* Review: alignment-based recognition

* Appearance-based recognition
— Classification
« Skin color detection example
— Sliding window detection
* Face detection example

How to form a hypothesis?

All possible assignments of model features to image
features?

Model|

Example: 2d affine mappings

« Say camera is looking down perpendicularly on planar
surface

P, in object Pyinimage

P, in object P,in image

Model It imape

* We have two coordinate systems (object and image),
and they are related by some affine mapping (rotation,
scale, translation, shear).




Alignment: backprojection

» Having solved for this transformation from some number
of detected matches (3+ here), can compute
(hypothesized) location of any other model point in the
image space.

Iigput image

Model

HEII RN

« Verify, e.g., based on edge agreement

Pose clustering and verification with
SIFT [Lowe]

To detect instances of objects from a model base:

1) Index descriptors (distinctive
features narrow possible matches)

Pose clustering and verification with
SIFT [Lowe]

To detect instances of objects from a model base:

1) Index descriptors (distinctive
features narrow possible matches)

record of parameters relative to
model coordinate system)

3) Affine fit to check for
agreement between model
and image features (fit and

with 3+ votes)

2) Generalized Hough transform
to vote for poses (keypoints have

verify using features from Hough bins
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Issue with hypothesis &
test alignment approach

* May have false matches
— We want reliable features to form the matches

* Local invariant features useful to find
matches, and to verify hypothesis

« May be too many hypotheses to consider
— We want to look at the most likely hypotheses first

» Pose clustering (i.e., voting): Narrow down
number of hypotheses to verify by letting
features vote on model parameters.

Indexing local features

____New image

Visual Object Recognition Tutorial

Modelbase

Planar
objects

Model images and
their SIFT keypoints

Input image

Model keypoints
that were used to
recognize, get
least squares
solution.

Recognition result

[Lowe]




3d objects

Background subtract Objects recognized,  Recognition in
for model boundaries spite of occlusion
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[Lowe]

Recall: difficulties of voting

» Noise/clutter can lead to as many votes as true target

» Bin size for the accumulator array must be chosen
carefully

» (Recall Hough Transform)

« In practice, good idea to make broad bins and spread
votes to nearby bins, since verification stage can
prune bad vote peaks.

Today

* Review: alignment-based recognition

* Appearance-based recognition
— Classification
* Skin color detection example
— Sliding window detection
* Face detection example

Supervised classification

< Given a collection of labeled examples, come up with a
function that will predict the labels of new examples.

“four” ﬂ ﬂ
“nine”

?
Training examples Novel input

* How good is some function we come up with to do the
classification?

« Depends on
— Mistakes made
— Cost associated with the mistakes

Supervised classification

» Given a collection of labeled examples, come up with a
function that will predict the labels of new examples.

« Consider the two-class (binary) decision problem
— L(4—9): Loss of classifyinga 4 as a9
— L(9—4): Loss of classifyinga 9 as a 4
» Risk of a classifier s is expected loss:
R(s) = Pr(4 — 9| using s)L(4 — 9)+ Pr(9 — 4| using s)L(9 — 4)

* We want to choose a classifier so as to minimize this
total risk

Supervised classification
! Optimal classifier wil
minimize total risk.

I
H ﬂ At decision boundary,

either choice of label

yields same expected

1
Feature value x
loss.

If we choose class “four” at boundary, expected loss is:
=P(classis9|x) L(9 — 4) + P(classis 4| x)L(4 — 4)

If we choose class “nine” at boundary, expected loss is:
=P(classis4|x) L(4—>9)
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Supervised classification
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1
Feature value x

Optimal classifier will
minimize total risk.

At decision boundary,
either choice of label
yields same expected
loss.

Supervised cla

|
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} > either choice of label

ssification

Optimal classifier will
minimize total risk.

At decision boundary,

1
Feature value x

yields same expected
loss.

So, best decision boundary is at point x where
P(classis9|x) L(9 — 4) =P(classis 4| x)L(4 — 9)

To classify a new point, choose class with lowest expected
loss; i.e., choose “four” if

P(4|x)L(4—>9)>P(9|x)L(9 > 4)

So, best decision boundary is at point x where
P(classis 9| x) L(9 — 4) =P(classis 4| x)L(4 —> 9)

To classify a new point, choose class with lowest expected

loss: i oose “four” i
P(4|X)L(4—>9) @ ->4)

How toevaiuate these probabilities?

Probability

Basic probability
» Xis arandom variable
« P(X) is the probability that X achieves a certain value

P(X) called a PDF

-probability distribution/density function

. 0<P(X)<1

. /jiP(X)dX:l or Y PX)=1

continuous X discrete X

« Conditional probability: P(X|Y)
— probability of X given that we already know Y

Source: Steve Seitz

Example: learning skin colors

« We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

P(x|skin)

g

b . : 7 Feature x = Hue
- 3 \
OhS

P(x|not skin)

What if feature

A Percentage of skin
pixels in each bin

v

dimension is high?

Feature x = Hue

Example: learning skin colors

* We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

t i
P(x|skin)
o '9
Feature x = Hue

Now we get a new image, A .
and want to label each pixel P(x|not skin)
as skin or non-skin.
What'’s the probability we
care about to do skin

detection?
Feature x = Hue

Bayes rule
postelrior likefihood prior
f I = .
P(skin[x) = P (x| skin)P(skin
P(x)

P(skin|x) « P(x| skin)P(skin)

Where does the prior come from?




Example: classifying skin pixels

Now for every pixel in a new image, we can
estimate probability that it is generated by skin.

Brighter pixels >
higher probability
of being skin

Figure from Gary Bradski
Classify pixels based on these probabilities
e if p(skin|z) > #, classify as skin
o if p(skin|z) < 0, classify as not skin

o if p(skin|z) = #, choose classes uniformly and at random

Example: classifying skin pixels

hahil

Figure 7: € of the flesh p v distmbution
marked on the source video image

Gary Bradski, 1998

Today

* Review: alignment-based recognition

* Appearance-based recognition
— Classification
* Skin color detection example
— Sliding window detection
* Face detection example
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Example: classifying skin pixels

» Black=pixels
classified as
skin

Jones and Rehg, CVPR 1999.

Example: classifying skin pixels

st

Figure 12: CAMSHIFT-based face tracker wsed 10 play
Quake 2 hands free by insenting contro
IOUSE quene

Using skin color-based face detection and pose estimation
as a video-based interface

Gary Bradski, 1998

Figure 13: CAMSHIFT-based face wacker used 1o

over & 3D graphic's model of Hawaii 1 variables into the

Detection via classification: Main idea

Basic component: a binary classifier

NoYemtcacar.
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K. Grauman, B. Leibe
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Detection via classification: Main idea Detection via classification: Main idea

Fleshing out this
pipeline a bit more,

1
N
1. Obtain training data - |
2. Define features ﬁﬁ !
3. Define classifier I s

Training examples

If object may be in a cluttered scene, slide a window
around looking for it.

Car/non-car

Classifier

Classifier

Feature
extraction

(Essentially, our skin detector was doing this, with a
window that was one pixel big.)

Visual Object Recognition Tutorial
Visual Object Recognition Tutorial

K. Grauman, B. Leibe

K. Grauman, B. Leibe
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Detection via classification: Main idea Feature extraction: =
global appearance

Feature
extraction

e Consider all subwindows in an image
» Sample at multiple scales and positions (and orientations)

* Make a decision per window:
» “‘Does this contain object category X or not?”

Simple holistic descriptions of image content
» grayscale / color histogram
» vector of pixel intensities

Visual Object Recognition Tutorial
Visual Object Recognition Tutorial

33

K. Grauman, B. Leibe K. Grauman, B. Leibe

Eigenfaces: global appearance description Feature extraction: global appearance

An early appearance-based approach to face recognition

TeTel4]

= Pixel-based representations sensitive to small shifts

Generate low-
dimensional
representation
of appearance
; with a linear
Eigenvectors computed subspace.

from covariance matrix

Mean

Training images

e Color or grayscale-based appearance description can be
sensitive to illumination and intra-class appearance

Project new variation

&]‘ - = W images to “face
o @ + + space”.
X Mean

Recognition via
nearest neighbors
in face space

Cartoon example:
p an albino koala
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Turk & Pentland, 1991
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Gradient-based representations

= Consider edges, contours, and (oriented) intensity
gradients

K. Grauman, B. Leibe
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Gradient-based representations:
Matching edge templates

e Chamfer matching

H E
I~ I~
ST W v
P A \:

Hierarchy of templates

Gavrila & Philomin ICCV 1999

K. Grauman, B. Leibe

Gradient-based representations:
Histograms of oriented gradients (HoOG)

Onentation Voting
= Overlapping Blocks

Input Image Gradient Image

Local Normalization

Map each grid cell in the input
window to a histogram counting
the gradients per orientation.

Code available:
http://pascal.inrialpes.fr/soft/olt/

Dalal & Triggs, CVPR 2005

K. Grauman, B. Leibe
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Gradient-based representations:
Matching edge templates

e Example: Chamfer matching

|

Input Edges Distance Template Best
image detected transform shape match
At each window position,
. ] 1
compute average min Depamger T ) = 17 3 i)
=7

distance between points on
template (T) and input ().

Gavrila & Philomin ICCV 1999

K. Grauman, B. Leibe
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Gradient-based representations

e Consider edges, contours, and (oriented) intensity
gradients

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations
» Contrast-normalization: try to correct for variable illumination

K. Grauman, B. Leibe

Gradient-based representations:
Rectangular features

Compute differences between sums of pixels in rectangles

Captures contrast in adjacent spatial regions, efficient to
compute

Each feature parameterized by scale, position, type.
Viola & Jones, CVPR 2001

K. Grauman, B. Leibe
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Classifier construction

* How to compute a decision for each
subwindow?

Image feature

K. Grauman, B. Leibe
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Boosting

e Build a strong classifier by combining number of “weak
classifiers™, which need only be better than chance

e Sequential learning process: at each iteration, add a
weak classifier

* Flexible to choice of weak learner
» including fast simple classifiers that alone may be inaccurate

= We’ll look at Freund & Schapire’s AdaBoost algorithm
» Easy to implement
~ Base learning algorithm for Viola-Jones face detector

K. Grauman, B. Leibe

45

AdaBoost: Intuition

® [ ] Weights
Weak [ ] ® Increased
Classifier 1 "“--.’ -------
® e Weak
® e Classifier 2 ——

K. Grauman, B. Leibe
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Visual Object Recognition Tutorial

Classifier construction: many choices...

Nearest neighbor

o i B

106 examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

Rowley, Baluja, Kanade 1998

LeCun, Bottou, Bengio, Haffner 1998

Support Vector Machines

Guyon, Vapnik
Heisele, Serre, Poggio,
2001,...

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 20086, ...

Conditional Random Fields

McCallum, Freitag, Pereira
2000; Kumar, Hebert 2003

K. Grauman, B. Leibe

Slide adapted from Antonio Torralba,

Visual Object Recognition Tutorial

8
2
S
2
c
S
€
=3
o
3
0]
4
I
=
=)
o
s
>
&
>

AdaBoost: Intuition

e © Consider a 2-d feature
Weak e ® o space with positive and
Classifler 1 - === g7 ® negative examples.
L] - .
e Each weak classifier splits

Figure adapted from Freund and Schapire

the training examples with
at least 50% accuracy.

Examples misclassified by
a previous weak learner
are given more emphasis
at future rounds.

K. Grauman, B. Leibe

46

AdaBoost: Intuition

© (=] Weights _.___a.
Weak @ @ Increased “‘““"Ir--
Classifier 1 ~.&____---=~ [] ° .
® e Weak }._': @
®e Classifier 2 — q
Weak —
classifier 3 @,

Final classifier is
combination of the
weak classifiers

K. Grauman, B. Leibe
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» Given cxample images (21,1 ), .. o [2a0ta ) where |
= 1,1 for negative and positive examgples respec- H
ey AdaBoost Algorithm
» Initialize weights u chedy For gy = 0,1 pespec- Start with
tively, where m and | are the number of megatives and |« yniform WEIghLS
poitives respectively on training
® Fort =1, T examples
1. Normalize the weights,
LSTER
12::Xp
i 4= ~For T rounds
o thir wy s probability distribstion,
2 ' & Evaluate
2. Fox each feature, 5, train a classifier &, which -« "
s resimeed o wsng @ single b The weighted error
e i evaliaied with respect 1wy, ¢ for each feature,
Ewillr) —u pick best.
3. Choose the clasasficr, . wih the howest emmor e,
4. Updale the weights Re-weight the examples:
" i, “ Incorrectly classified -> more weight
where ¢ = 1 if example £, is classified cor- Correctly classified -> less weight
rectly, ;= | otherwise, and 4 "

» The final strong chisifier is:

Final classifier is combination of the
“~weak ones, weighted according to
error they had.

T S nheisy 2 b0

hie b
10 oherwise

where i, = lag

Freund & Schapire 1995

Visual Object Recognition Tutorial
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Example: Face detection

* Frontal faces are a good example of a class where
global appearance models + a sliding window
detection approach fit well:

» Regular 2D structure
» Center of face almost shaped like a ““patch”/window

= Now we’ll take AdaBoost and see how the Viola-
Jones face detector works

K. Grauman, B. Leibe

Large library of filters

Considering all
possible filter
parameters:
position, scale,
and type:

180,000+
possible features
associated with

each 24 x 24
| =

]
e LS

=R

window

Use AdaBoost both to select the informative
features and to form the classifier

Viola & Jones, CVPR 2001

11/6/2008

Visual Object Recognition Tutorial

Faces : terminology

e Detection: given an
image, where is
the face?

* Recognition: whose
face is it?

Visual Object Recognition Tutorial
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Feature extraction

“Rectangular” filters

| E
=

Feature output is difference
between adjacent regions

s

Value at (x,y) is

Efficiently computable Z‘:,TVZfa"n'ﬁ'j the

with integral image: any left of (x,y) ) | " I
sum can be computed . J:[
in constant time 1y !

Avoid scaling images 2>
scale features directly
for same cost

Dalsd-(2+3
a A A B O M- deC s s 8

Integral image

Viola & Jones, CVPR 2001 52

K. Grauman, B. Leibe

AdaBoost for feature+classifier selection

= Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

1o, Resulting weak classifier:

hx) {rl it £(x)> 0,

-1 otherwise

For next round, reweight the
examples according to errors,
choose another filter/threshold
combo.

 — LX) —
Outputs of a possible

rectangle feature on
faces and non-faces.

Viola & Jones, CVPR 2001
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« Given cxampbe mages (21, gs).. .. . (2o, e ) whore |
:'\.-h (11 for megative and posiive evangles e | A aBOOSt A|g0|’|thm

o Initialize weights u A Forys = 0,1 respec Start with

tively. where ir and | ane the number of megatives and |« uniform weights
psitives respectively

’ on training
® Fort =1, T examples
1. Normalize the weights,
LSTER
R ~For T rounds
o thir wy s probability distribstion,
., Evaluate
2. Fox each feature, 5, train a classifier &, which -« "
s resimeed o wsng @ single b The weighted error
crror s cvalisned with fespect 1w, o for each feature,
Ewillr) —u pick best.
3. Choose the clasasficr, . wih the howest emmor e,
4. Updale the weights Re-weight the examples:
" i, “ Incorrectly classified -> more weight
where ¢ = 1 if example £, is classified cor- Correctly classified -> less weight
r-.“s - L athepage L

» The final strong chisifier is:

Final classifier is combination of the

meym{ b Diaodele) 2 4T, m “—weak ones, weighted according to

10 orherwise

error they had.

where i, = log

Freund & Schapire 1995

AdaBoost for Efficient Feature
Selection

+ Image Features = Weak Classifiers
= For each round of boosting:
Evaluate each rectangle filter on each example
— Sort examples by filter values
Select best threshold for each filter (min error)
« Sorted list can be quickly scanned for the optimal threshold
Select best filter/threshold combination
—~ Weight on this feature is a simple function of error rate
Reweight examples

Viola and Jones. Robust object detection using a boosted cascade of simple features, CVPR 2001

* Even if the filters are fast to compute, each
new image has a lot of possible windows to
search.

* How to make the detection more efficient?
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Viola-Jones Face Detector: Summary

Train cascade of
classifiers with
AdaBoost

2
~ e | T
==y ][

Selected features,
thresholds, and weights

Non-faces

* Train with 5K positives, 350M negatives
« Real-time detector using 38 layer cascade

* 6061 features in final layer

e [Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/]

K. Grauman, B. Leibe
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Cascading classifiers for detection

For efficiency, apply less
accurate but faster classifiers
first to immediately discard
windows that clearly appear to

be negative; e.g., 0T 0LV o LT LN
. . . N F F F F
~ Filter for promising regions with an A S
initial inexpensive classifier A

» Build a chain of classifiers, choosing
cheap ones with low false negative
rates early in the chain

Fleuret & Geman, 1JCV 2001
Rowley et al., PAMI 1998
Viola & Jones, CVPR 2001 58

K. Grauman, B. Leibe Figure from Viola & Jones CVPR 2001

Viola-Jones Face Detector: Results

First two features
selected

K. Grauman, B. Leibe
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Viola-Jones Face Detector: Results Viola-Jones Face Detector: Results

JUDYBATS §

Visual Object Recognition Tutorial
Visual Object Recognition Tutorial

Viola-Jones Face Detector: Results Detecting profile faces?

Detecting profile faces requires training separate
detector with profile examples.
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Visual Object Recognition Tutorial

Viola-Jones Face Detector: Results Example application

Frontal faces
detected and
then tracked,
character name
inferred with
alignment of
script and
subtitles.

Everingham, M., Sivic, J. and Zisserman, A.

"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006.

http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Visual Object Recognition Tutorial
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Example application: faces in photos

rl y O Sldish Escole Otachy Iags My Photos :._.___. -

Riya Personal Search
Use cur face and text search your p o

B 1
S

M e pusic and share

Foyws Personai Searcn ety
WD Syl sasthens Ve a:

Pedestrian detection

= Detecting upright, walking humans also possible using sliding
window’s appearance/texture; e.g.,

+ARIRLTRMEN
PEGRERERTIN

LI

SVM with Haar wavelets pce-time rectangle
[Papageorgiou & Poggio, 1JCV features [Viola, Jones &
2000] Snow, ICCV 2003]

SVM with HoGs [Dalal &
Triggs, CVPR 2005]

K. Grauman, B. Leibe

Limitations

e High computational complexity

» For example: 250,000 locations x 30 orientations x 4 scales =
30,000,000 evaluations!

» If training binary detectors independently, means cost increases
linearly with number of classes

e With so many windows, false positive rate better be low

" 71
K. Grauman, B. Leibe
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e Other classes that might work with global appearance in
a window?

K. Grauman, B. Leibe

Highlights

* Sliding window detection and global appearance
descriptors:
» Simple detection protocol to implement
» Good feature choices critical
» Past successes for certain classes

K. Grauman, B. Leibe

Limitations (continued)

= Not all objects are “box” shaped

K. Grauman, B. Leibe
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Limitations (continued)

= Non-rigid, deformable objects not captured well with
representations assuming a fixed 2d structure; or must
assume fixed viewpoint

* Objects with less-regular textures not captured well
with holistic appearance-based descriptions

= =i

K. Grauman, B. Leibe

Limitations (continued)

* |n practice, often entails large, cropped training set
(expensive)

* Requiring good match to a global appearance description

can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni K. Grauman, B. Leibe
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Limitations (continued)

= If considering windows in isolation, context is lost

Sliding window Detector’s view

Figure credit: Derek Hoiem K. Grauman, B. Leibe

Models based on local features will
alleviate some of these limitations...

K. Grauman, B. Leibe
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