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Last time

¢ Appearance-based recognition: using global
appearance descriptions within a window to
characterize a class.
— Classification: basic idea of supervised learning
¢ Skin color detection example
— Sliding windows: detection via classification
* Make a yes/no decision at every window

¢ Face detection example using boosting and rectangular
features [Viola-Jones 2001]

Misc notes
¢ Extra disk space

* SIFT extraction
— http://www.cs.ubc.ca/~lowe/keypoints/

Demo Software: SIFT Keypoint Detector

Dl Laus

Today

¢ Additional classes well-suited by global
appearance representations
 Discriminative classifiers
— Boosting (last time)
— Nearest neighbors
— Support vector machines

 Application to pedestrian detection
* Application to gender classification
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Viola-Jones Face Detector: Summary

Train cascade of
classifiers with
AdaBoost

New image

Selected features,

v [t =
Non-faces thresholds, and weights

* Train with 5K positives, 350M negatives
« Real-time detector using 38 layer cascade
* 6061 features in final layer

e [Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/]

K. Grauman, B. Leibe
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Viola-Jones Face Detector: Results

JUDYBATS

7%

.'I._'.(F‘f-—\
q;

il

:
A
1%
¥
H
i
l.




Example application

Frontal faces
detected and
then tracked,
character name
inferred with
alignment of
script and
subtitles.

Everingham, M., Sivic, J. and Zisserman, A.

"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006.

http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Visual Object Recognition Tutorial

K. Grauman, B. Leibe

¢ Other classes that might work with global
appearance in a window?
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Example application: faces in photos

My Protes

rnyQ. e

Riya Personal Search
Use cur face recognition and text recognition, to search your personal photos
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Fifth International Penguin Conference
Ushuaia, Tierra del Fuego, Argentina

Automated Visual Recognition of Individual
African Penguins

o —
By Thomas, Peier § Barham, lasko Calié

Penguin detection & identification

Adrican penguins { Sphewivcas denersus) Cormy a
paltern ol b Ut doses puod
change Trom season W season during their adull
NiFe. Further, as Far as we can tell. no 1w penguins
Tave exuetly the sume patiern, We have developed
a real-tlme system that ¢ locate
African peng within
video sequences ar

Tslng, lhne- I(h niiflers

or photegraphed  Afric uins  agalnst a
population database can be performed. This paper
provides a detalled technical description of the
developed system and outlines the scope and the
picationm

This project uses the Viola-Jones Adaboost face detection algorithm
to detect penguin chests, and then matches the pattern of spots to
identify a particular penguin.

Burghart, Thomas, Barham, and Calic. Automated Visual Recognition of Individual African Penguins , 2004.
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select good features to
distinguish the chest from
non-chests with Adaboost

g the ko of thess chest feahers. 1B) Varsoss chests of adlt
African penguins snder differen lighting conditsons. {Figure source
[191r

Burghart, Thomas, Barham, and Calic. Automated Visual Recognition of Individual African Penguins , 2004.




Figure 12 Applicavion af Amemronsl Coveades on Ches
AN) Isage it thal am acoepead ab lkely K fepresest & chest afler
ane stage are marked s white rectangies. (FARer thiee stages sl footage. Some sesult images are shewn sbove. The detector
ACT Afler five stages,.. (D) . ol after soven stages with fisal might fire several times om one and the same chest instance. | figure
e, (Theuse scurce | 151, 1191)

Figure 18 Aol Dereeror Spowing Fromal Pesguin Chests:
The detecton wan lessod on & series of black snd white w1l imapes

Attentional cascade Penguin chest detections

Burghart, Thomas, Barham, and Calic. Automated Visual Recognition of Individual African Penguins , 2004.
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Figure 14. Visal Description of the Chess Widnk Measwremens;
Starting from an upper central point of the chest Aol two locally
operating edge detectors moving apart search for the left and right
boundary of the assumed chest. (figuse source [17])

Given a detected chest, try to extract the

whole chest for this particular penguin.

Burghart, Thomas, Barham, and Calic. Automated Visual Recognition of Individual African Penguins , 2004.

Example
detections

Burghart, Thomas, Barham, and Calic. Automated Visual Recognition of Individual African Penguins , 2004.

spots to a database of known penguins.

Burghart, Thomas, Barham, and Calic. Automated Visual Recognition of Individual African Penguins , 2004.

Penguin detection & identification

mire 1. Mdenvificarion aof an African Pengurin by its Chest Pattern:
Sereenshot of Software Prototype: African penguins carmy o unigue
paitem of Mack spois on their chest. The detection of the chest
location amd the decomiposition of the spol patiermn alkow checking a
photographed individual (here penguin “David” from Bristol Zoo)
apainst & population dstabase. (figure source [18], [19])

Burghart, Thomas, Barham, and Calic. Automated Visual Recognition of Individual African Penguins , 2004.

Discriminative classifiers

Nearest neighbor Neural networks

-} n . e -lF“i_'ﬁ,r
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Shakhnarovich, Viola, Darrell 2003 LeCun, Bottou, Bengio, Haffner 1998
Berg, Berg, Malik 2005... Rowley, Baluja, Kanade 1998
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Today

* Additional classes well-suited by global
appearance representations
¢ Discriminative classifiers
— Boosting (last time)
— Nearest neighbors
— Support vector machines

* Application to pedestrian detection
* Application to gender classification
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Nearest Neighbor classification

« Assign label of nearest training data point to each
test data point

Black = negative
Red = positive

. .@'I.ﬁ\ Novel test example

Closestto a
positive example
from the training
set, so classify it
as positive.

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2D data

K-Nearest Neighbors classification

« For a new point, find the k closest points from training data
« Labels of the k points “vote” to classify

X,

L k=5
Black = negative |, o " .. ** Ifquery lands here, the 5
Red = positive . e e “.+ » NN consist of 3 negatives
e ( i 2 and 2 positives, so we
2t 3}/ v " classify it as negative.

Source: D. Lowe

Example: nearest neighbor classification

¢ We could identify the penguin in the new view based on the
distance between its chest spot pattern and all the stored
penguins’ patterns.

Labeled database of known
penguin examples

Example: nearest neighbor classification

¢ Similarly, if the video frames we were indexing in the Video
Google database had labels, we could classify the query. NN #1

Rachel, Phoebe
NN #2

Rachel, Chandler
NN #3

e et i3

Labeled database of
frames from movie
Rachel, Phoebe

Nearest neighbors: pros and cons

* Pros:
— Simple to implement
— Flexible to feature / distance choices
— Naturally handles multi-class cases

— Can do well in practice with enough representative
data

e Cons:

— Large search problem to find nearest neighbors
— Storage of data

— Must know we have a meaningful distance function
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Discriminative classifiers

Nearest neighbor

CRE e

10° examples

Shakhnarovich, Viola, Darrell 2003

Berg, Berg, Malik 2005...

Neural networks
. TR
AN

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Support Vector Machines

Guyon, Vapnik
Heisele, Serre, Poggio,
2001,...

Boosting
Jesus

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006, ...

Conditional Random Fields

McCallum, Freitag, Pereira
2000; Kumar, Hebert 2003

Slide adapted from Antonio Torralba

Today

* Additional classes well-suited by global
appearance representations
¢ Discriminative classifiers
— Boosting (last time)
— Nearest neighbors
— Support vector machines

* Application to pedestrian detection
* Application to gender classification

Linear classifiers

L

Lines in R2
a X

Let W= =
¢ Y

ax+cy+b=0

\

Lines in R?

N

Let W= X=

ax+cy+b=0

!

w-x+b=0

Linear classifiers

¢ Find linear function to separate positive and
negative examples

PY X, positive:  X,-w+b>0

X, negative: X, W+b<0

Which line
is best?
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Support vector machines

* Want line that maximizes the margin.

Support Vector Machines (SVMs)

¢ Discriminative %
classifier based on
optimal separating

(228N L4 X, positive (y, =1): X, W+bx1
X, negative(y, =—1): x,-w+b<-]

line (fOI' 2d case) ° For support, vectors, X, -W+b==1
.
° L . °
e Maximize the margin
between the positive
and negative training
examples Support vectors e Margin
C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998
Lines in R? Lines in R?
a X a X
Let W= X= Let W= X=
c y ¢ Y
W w
ax+cy+b=0 ax+cy+b=0
\ w-x+b=0 w-x+b=0
D= ‘axo +¢y, +b‘ distance from
/az 1ot point to line

) ) Support vector machines
Llnes n R2 * Want line that maximizes the margin.

X, positive (y, =1): X, W+b>1
X, negative(y, =—1): X, -w+b<-I

W

For support, vectors, X, W+b==]

ax+cy+b=0

\ w-x—{bzo

T .
ax,+ ey, +8  w'x+b | distance from

D= m - HWH point to line

Distance between point | X,"W+b|
and line: IIw|

For support vectors:
wx+b %l 1 -1

Il Il

_—
Iwl

]
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Support vector machines Finding the maximum margin line

« Want line that maximizes the margin. 1. Maximize margin 2/Hw||

2. Correctly classify all training data points:
x, positive (y, =1):  x,-w+b>1 X, positive (y, =1): X, wW+b2>1

X, negative(y, =—1): X, -w+b<-] X, negative(y, =—1):  x,-w+b<-1

For support, vectors, X, -W+b==1 . L
Quadratic optimization problem:

o Distance between point | X;*W+b|

and line: wil T

N 1
Minimize —w'w
. 2
Therefore, the marginis 2/ ||w]| One constraint for each
training point.

) Subject to y(wx+b) > Ix]
Margin

Note sign trick.

[C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

Finding the maximum margin line Finding the maximum margin line
« Solution: W= a,yX « Solution: W=D a,yx,
b=y,—wx; (forany support vector)
learned | | Support W-X+b= Z’_ ayX,-X +b
weight vector « Classification function:

. If f(x) < O, classify
f(x) =sign (W X+ b) as negative,

. i - if f(x) > 0, classify
) as positive

* Notice that it relies on an inner product between the test
point x and the support vectors x;
* (Solving the optimization problem also involves

computing the inner products x; - x; between all pairs of
training points)

C. Burges,ATutDrial Qn Support Vector Machines for Pattern Recognilion, Data Mining and Kncwledge Discovem, . Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

How is the SVM objective different

from the boosting objective? Questions

¢ What if the features are not 2d?

¢ What if the data is not linearly separable?

e
(] @ ¢ What if we have more than just two
e ® .
@ categories?
@ O
o




Questions

¢ What if the features are not 2d?

— Generalizes to d-dimensions — replace line with
“hyperplane”

¢ What if the data is not linearly separable?

¢ What if we have more than just two
categories?
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Planes in R3

a X

(xo’yo’io) Let Ww=[b| x=|y

} c z
ax+by+cz+d=0

w-x+d=0
Do |ax0 +by, +cz, +d| _ w'x+d | distance from
- m - "W" point to plane

Hyperplanes in R"

Hyperplane H is set of all vectors X € R"
which satisfy:
wx, +w,x, +...+wx, +b=0

!

wx+b=0

T distance from
W xX+b
D(H,x)=——— pointto
"W" hyperplane

Questions

¢ What if the features are not 2d?
¢ What if the data is not linearly separable?

¢ What if we have more than just two
categories?

‘Non—linear SVMs

= Datasets that are linearly separable with some noise
work out great:
9 OI & .

= But what are we going to do if the dataset is just too hard?

0 x
= How about... mapping data to a higher-dimensional
space:

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

Another example:
Non-separable by a hyperplane in 2-d

X

Source: Bill Freeman




Another example:

Separable by a hyperplane in 3-d

R

® :a =
°e_o
e ® e ®°
L ]
o, e®
° . %
° 5 o
°
e e
°
[ ]

Source: Bill Freeman
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Non-linear SVMs: Feature spaces

General idea: the original input space can be mapped
to some higher-dimensional feature space where the
training set is separable:

Slide from Andrew Moore’s tutorial: http:/Awww.autonlab.org/tutorials/svm.html

Nonlinear SVMs

» The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(x; X/) =p(x;)" (P(Xj)

* This gives a nonlinear decision boundary in the
original feature space:

> ayK(x,x) +b

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998

Examples of General Purpose
Kernel Functions

Linear: K(x;,x;)= X; X;
Polynomial of power p: K(x;,x;)= (1+ x; Tx;)P

Gaussian (radial-basis function network):
2

x|

20°

K(xi,x].):exp(f )

Slide from Andrew Moore’s tutorial: http://www.autonlab. html

Questions

e What if the features are not 2d?
¢ What if the data is not linearly separable?

¢ What if we have more than just two
categories?

Multi-class SVMs

¢ Achieve multi-class classifier by combining a number of binary
classifiers

e Oneuvs.all
— Training: learn an SVM for each class vs. the rest

— Testing: apply each SVM to test example and assign to it
the class of the SVM that returns the highest decision
value

¢ One vs. one
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to
the test example




SVMs for recognition

1. Define your representation for each
example.

2. Select a kernel function. [

3. Compute pairwise kernel values m % tag
between labeled examples

=

4. Given this “kernel matrix” to SVM B

optimization software to identify .
support vectors & weights. 12 O™

[&]

. To classify a new example: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.
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Example: pedestrian detection
with HoG’s and SVM’s

Onentation Voting
—— Overlapping Blocks

Gradient Image

Input Image

Local Normalization

« Map each grid cell in the input
window to a histogram counting
the gradients per orientation.

« Train a linear SVM using training
set of pedestrian vs. non-
pedestrian windows.

Dalal & Triggs, CVPR 2005

Code available: http://pascal.inrialpes.fr/soft/olt/

11/11/2008

Visual Object Recognition Tutorial

n Tutorial

Visual Object Recog

Pedestrian detection

= Detecting upright, walking humans also possible using sliding
window’s appearance/texture; e.g.,

s AROHETEAES
PRRLERRYIY
NEBNER

SVM with Haar wavelets
[Papageorgiou & Poggio, 1JCV
2000]

Space-time rectangle
features [Viola, Jones &
Snow, ICCV 2003]

SVM with HoGs [Dalal &
Triggs, CVPR 2005]

K. Grauman, B. Leibe

Pedestrian detection with HoG’s & SVM’s

= Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs,
International Conference on Computer Vision & Pattern Recognition - June 2005

= http://lear.inrialpes.fr/pubs/2005/DT05/

Example: learning gender with SVMs

= F - M

o Gender | . F j ‘ ™M
Classifier

- - F _M

Moghaddam and Yang, Learning Gender with Support Faces,
TPAMI 2002.

Moghaddam and Yang, Face & Gesture 2000.

Face alignment
processing

Feature
Search

Multiscale
Head Search

-G

)

Processed
faces

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

10



Learning gender with SVMs

» Training examples:
— 1044 males
— 713 females

« Experiment with various kernels, select

Gaussian RBF

K(x;,x;) =exp(— 757

2
x|

Support Faces

FEMALE b

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Classifier Performance

Classifier | Error Rate

| Overall Male Female
SVM with RBF kernel i 338% 2.05% 4.79%
SVM with cubic polynomial kernel 4.88 % 4.21% 5.59%
Large Ensemble of RBF 5.54% 4.59% 6.55%
Classical RBF 7.79% 6.89% 8.75%
Quadratic classifier 10.63% 9.44% 11.88%
Fisher linear discrimi 13.03% 12.31% 13.78%
Nearest neighbor 27.16% | 26.53% 28.04%
Linear classifier 58.95% | 58.47% | 5945%

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Gender perception experiment:

How well can humans do?

¢ Subjects:
— 30 people (22 male, 8 female)
— Ages mid-20’s to mid-40’s
» Test data:
— 254 face images (6 males, 4 females)
— Low res and high res versions
» Task:
— Classify as male or female, forced choice
— No time limit

Moghaddam and Yang, Face & Gesture 2000,

Gender perception experiment:
How well can humans do?

34 x 48 21 x12

Stimuli —

N = 4032 N=252

Raaiilise—, High-Res Low-Res

6.54% 30.7%

Error Error

and Yang Eace & Gesiure 2000

G =37%

% Error Rates

Il Low-Res
25 [ Hi-Res

l

SVM Human

Figure 6. SVM vs. Human performance

Human vs. Machine

¢ SVMs performed
better than any
single human
test subject, at
either resolution

11/11/2008
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SVMs: Pros and cons

Hardest examples for humans

* Pros

Many publicly available SVM packages:
http://www.kernel-machines.org/software
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Kernel-based framework is very powerful, flexible

Often a sparse set of support vectors — compact at test time

Work very well in practice, even with very small training
sample sizes

Top five human misclassifications * Cons

« No “direct” multi-class SVM, must combine two-class SVMs
« Can be tricky to select best kernel function for a problem

« Computation, memory

— During training time, must compute matrix of kernel values for
every pair of examples

— Learning can take a very long time for large-scale problems

Moghaddam and Yang, Face & Gesture 2000.

antad ool ana lazabolk

Summary: today

¢ Additional classes well-suited by global
appearance representations
* Discriminative classifiers
— Boosting (last time)
— Nearest neighbors
— Support vector machines

* Application to pedestrian detection
* Application to gender classification
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