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Announcements

* My Wed office hours 1-2 pm
— (and Thurs 2-3 pm)

Tracking
* Pset 4 out today, due Thurs. Dec 4

Tuesday, Nov 25 — Auto extension to Tues. Dec 9

Kristen Grauman
UT-Austin

Pset 4 overview Outli
Part A: 100 pts utiine
Track a corner through the « Last time: Motion
:]i?:h‘i':'th feature-based — Motion field and parallax
g — Optical flow, brightness constancy
— Aperture problem
Part B: 25 pts T dp .u P
Generalize to multiple tracks, loday.
allow new tracks to form as — Using optical flow (dense motion estimates) to
new vehicles enter the recognize activities
frame. — Tracking
« Tracking as inference
E.C.: bg sub, Kalman filtering * Linear models of dynamics
’ « Kalman filters
Motion estimation techniques Direct methods: Estimating optical flow
» Direct methods
« Directly recover image motion at each pixel from spatio-temporal ~ o
image brightness variations ¢ N o
« Dense motion fields, but sensitive to appearance variations o 1 °
« Suitable for video and when image motion is small °

1(x,y,t=1) 1(x,y,t)

» Given two subsequent frames, estimate the apparent
motion field between them.

» Key assumptions
« Brightness constancy: projection of the same point looks the
same in every frame
+ Small motion: points do not move very far
« Spatial coherence: points move like their neighbors
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Solving the aperture problem (grayscale image) Using optical flow:
« How to get more equations for a pixel? recognizing facial expressions

+ Spatial coherence constraint: pretend the pixel's
neighbors have the same (u,v)
« If we use a 5x5 window, that gives us 25 equations per pixel

0= L(p;) + VI(p;) - [u ] Dipes
L:(p1) Iy(p1) Ii(p1)
L(p2) Iy(p2) || uw|_ _| lilp2)
: : v : rpers
Ir(p2s) Iy(p2s) Ii(p25) a '
A d=b - |
25x2 ZXT 25x1 o saiie
Recognizing Human Facial Expression (1994)
by Yaser Yacoob, Larry S. Davis
Using optical flow: Using optical flow:
recognizing facial expressions action recognition at a distance

o

* Features = optical flow within a region of interest

* Classifier = nearest neighbors
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by [Efros, Berg, Mori, & Malik 2003]
..,a] ﬁj A i htt'::j/g;rpghics?:s.cmu.Zdu/peopIe/efros/research/action/
Using optical flow: Using optical flow:
action recognition at a distance action recognition at a distance

Correlation-based tracking
Extract person-centered frame window

Extract optical flow to describe the region’s motion.

[Efros, Berg, Mori, & Malik 2003] [Efros, Berg, Mori, & Malik 2003]
http://graphics.cs.cmu.edu/people/efros/research/action/ http://graphics.cs.cmu.edu/people/efros/research/action/




Using optical flow:
action recognition at a distance

Input
Sequence

Matched
Frames

Use nearest neighbor classifier to name the
actions occurring in new video frames.

[Efros, Berg, Mori, & Malik 2003]
http://graphics.cs.cmu.edu/people/efros/research/action/
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Using optical flow:
action recognition at a distance

=

-
Input Matched NN
Sequence Frame

Use nearest neighbor classifier to name the
actions occurring in new video frames.

[Efros, Berg, Mori, & Malik 2003]

http://graphics.cs.cmu.edu/people/efros/research/action/

Do as | do: motion retargeting

* Include constraint for similarity within sequence as well as
across sequences

Optical flow for tracking?

If we have more than just a pair of frames, we could
compute flow from one to the next:

But flow only reliable for small motions, and we may have
occlusions, textureless regions that yield bad estimates
anyway...

Motion estimation techniques

* Direct methods

« Directly recover image motion at each pixel from spatio-temporal
image brightness variations

« Dense motion fields, but sensitive to appearance variations

« Suitable for video and when image motion is small

* Feature-based methods

« Extract visual features (corners, textured areas) and track them
over multiple frames

+ Sparse motion fields, but more robust tracking
+ Suitable when image motion is large (10s of pixels)

Feature-based matching for motion

Best matching
neighborhood

Interesting point

Search
window

Image 11

Image I2
;Search window is centered at the point
. where we last saw the feature, in image 1.

Best match = position where we have the
highest normalized cross-correlation value.




Feature-based matching for motion

« For a discrete matching search, what are the
tradeoffs of the chosen search window size?

* Which patches to track?
« Select interest points — e.g. corners

* Where should the search window be placed?
« Near match at previous frame

* More generally, according to expected dynamics of the
object

Detection vs. tracking

Detection: We detect the object independently in
each frame and can record its position over time,
e.g., based on blob’s centroid or detection
window coordinates

Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
i.e., our expectation of object’'s motion pattern.
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Detection vs. tracking

Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
i.e., our expectation of object’s motion pattern.

Tracking with dynamics

» Use model of expected motion to predict where

objects will occur in next frame, even before seeing
the image.

* Intent:

— Do less work looking for the object, restrict the search.

— Get improved estimates since measurement noise is
tempered by smoothness, dynamics priors.

« Assumption: continuous motion patterns:
— Camera is not moving instantly to new viewpoint

— Objects do not disappear and reappear in different
places in the scene

— Gradual change in pose between camera and scene




Notation reminder
x~N(wX)

* Random variable with Gaussian probability
distribution that has the mean vector p and
covariance matrix Z.

» x and p are d-dimensional, Z is d x d.
d=1

d=2

If xis 1-d, we
just have one
X parameter -
. > the
variance: 02
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Tracking as inference

» The hidden state consists of the true parameters
we care about, denoted X.

+ The measurement is our noisy observation that
results from the underlying state, denoted Y.

State vs. observation

Hidden state : parameters of interest
Measurement : what we get to directly observe

Tracking as inference

» The hidden state consists of the true parameters
we care about, denoted X.

* The measurement is our noisy observation that
results from the underlying state, denoted Y.

+ At each time step, state changes (from X4 to X,)
and we get a new observation Y.

+ Our goal: recover most likely state X; given

— All observations seen so far.
— Knowledge about dynamics of state transitions.

Tracking as inference: intuition

measurement

* Belief: prediction *
Belief: prediction

Corrected prediction

measuremsm

old belief

Standard independence assumptions

» Only immediate past state influences

current state
P(X;|Xy,..., Xi 1) =PX;|X; )

* Measurements at time i only depend on
the current state

P(Y.Y;,...Yi|X:) = P(Y:X)P(Y;, ..., Yl X))




Tracking as inference

* Prediction:
— Given the measurements we have seen up to
this point, what state should we predict?

P(X,{Yor---r¥is)

 Correction:
— Now given the current measurement, what
state sho<¢|d we predict? )

P(X|Yor--- Vi
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Tracking as inference

Recursive process:

- Base case: we have an initial prior P(X,) on the state in
absence of any evidence, which we can correct based
on the first measurement Y,=y,

« Given corrected estimate for frame t:
1) Predict for frame t+1
2) Correct for frame t+1

Time Updale Meas!
“Predict”) 0

N

Questions

« How to represent the known dynamics that govern the
changes in the states?

« How to represent relationship between state and
measurements, plus our uncertainty in the measurements?

* How to compute each cycle of updates?

Representation: We'll consider the class of linear
dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.

Linear dynamic model

» Describe the a priori knowledge about

— System dynamics model: represents evolution
of state over time, with noise.

o NDAgi=a)

nx1 nxn nx1

— Measurement model: at every time step we
get a noisy measurement of the state.

Yor N(l\fd@zm)

mx1 mxn nx1

Example: randomly

~N(Dx, ;X
drifting points X, ~ N(Dx, ;)

« Consider a stationary object, with state as position

« Position is constant, only motion due to random
noise term.

« State evolution is described by identity matrix D=I

Example: Constant
velocity (1D points) P
1 d position
g meaiirements
2 S
E ) \states

time




11/25/2008

Example: Constant X, ~ N(Dx, ;;Zy)
velocity (1D points) ¥~ N(Mx;; X))

+ State vector: position p and velocity v

Example: Constant
acceleration (1D points)

“I position

i[
|
!_

time

= (greek letters
X, = Py Pe=Peat (At)vt'l te denote noise
v, V=V, + é’ terms)
= D,X,_, +Noise = e +noise
X, = DXy “lo 1 Ve,
* Measurement is position only
. P .
y, = Mx +noise=[1 0 +noise
t
Example: Constant X, ~ N(Dx, ;;Zy)
acceleration (1D points) yi~ N(Mx; X))
« State vector: position p, velocity v, and acceleration a.
P, Py = Py + (A, +& (greek letters
X =| Y Ve =V H(Aa + & ?::st)e e
& a=a,+¢
1 At 0| p.,
X, =DxX_ +noise=/0 1 At| v, |+noise
0 0 1]a,
* Measurement is position only
P
Y, =Mx +noise=[L 0 0] v, |+noise
a,

Questions

* How to represent the known dynamics that govern the

changes in the states?

* How to represent relationship between state and
measurements, plus our uncertainty in the measurements?

* How to compute each cycle of updates?

Representation: We'll consider the class of linear
dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.

The Kalman filter

* Method for tracking linear dynamical models in
Gaussian noise

* The predicted/corrected state distributions are
Gaussian
— Only need to maintain the mean and covariance

— The calculations are easy (all the integrals can be
done in closed form)

Kalman filter

Know corrected state .

from previous time step, Receive
and all measurements up measurement
to the current one >

Predict distribution over

next state.
Time update Measurement update
(“Predict”) (“Correct”)

P(X eees
( Yo ytfl) P(Xt‘yo,,_,,yt)
Mean and std. dev. Time advances: t++ Mean and std. dev.
of predicted state: of corrected state:

- - + +
Hi 1Oy Hy 1 Oy

Know prediction of
state, and next
measurement >
Update distribution over
current state.




Kalman filter for 1d state

Want to P(Xt|y0"“’ yt—l)
represent
and update P(xt|y0,__,, yt)

11/25/2008

1D Kalman filter: Prediction

» Have linear dynamic model defining predicted state
evolution, with noise
X, ~ N(dx,,,0?)

* Want to estimate predicted distribution for next state
- -\2
P(Xt|yo’---’ thl): N(:ul (o7) )
* Update the mean:
- +
pe =du’y

» Update the variance:
(07)" =04 +(do,)*

1D Kalman filter: Correction

* Have linear model defining the mapping of state
to measurements:
Y, ~ N(mxt,afn)
* Want to estimate corrected distribution given
latest meas.: . .
P(Xt‘yo""v yt): N(;ut 7(O-t )2)

* Update the mean: -2 -\2
P +:/uto-m+myt(o-t)

f T i)

» Update the variance:

(O.t+)2 — O-:\(O-t_)z

on+m?(oy)’

Prediction vs. correction

+ _ /“1;6; + myt(o-ti)z ( +)2 _ Grf] (617)2
t = 2 27 2 O¢) = 2 2
ont+m(o;) oL+m (o)

» What if there is no prediction uncertainty (o, =0)?
— 2
o= (o) =0

The measurement is ignored!

D

« What if there is no measurement uncertainty (o,, =0)

/ut+:£ (O-:)ZZO
m

The prediction is ignored!

Recall: constant velocity example

__| measurements o

~

position

state

time
State is 2d: position + velocity
Measurement is 1d: position

Constant velocity model

Kalman filter processing

o state

X measurement

= - | * predicted mean estimate
H + corrected mean estimate
= il HEfl ' | bars: variance estimates
g . L HET TR before and after measurements
: =] ta
o
51
n
o
“o o 20 E:
time




position

Constant velocity model

Kalman filter pi
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o state

x measurement

0| L | * predicted mean estimate
+ corrected mean estimate

bars: variance estimates
before and after measurements

position

Constant velocity model

», . .
Kalman filter processing
) o state
A
X measurement
0| * predicted mean estimate

+ corrected mean estimate

bars: variance estimates
before and after measurements

position

Constant velocity model

Kalman filter pr

o state

X measurement

= * predicted mean estimate
+ corrected mean estimate

bars: variance estimates
before and after measurements

Kalman filter: General case (> 1dim)

What if state vectors have more than one dimension?

PREDICT ¢ ‘ CORRECT

Kt :Z;MI(MtE(M‘T +2m‘)71

X =Dy

I =DZ{,D/ +3,

5 =(1-KM, )z,

lore weight on residual
when measurement error

covariance approaches 0.

Less weight on residual as a
priori estimate error
covariance approaches 0.

Tracking: issues

« Initialization

— Often done manually

— Background subtraction, detection can also be used
» Data association, multiple tracked objects

— Occlusions

Data association

* We've assumed entire
measurement (y) was cue
of interest for the state

« But, there are typically
uninformative
measurements too—clutter.

» Data association: task of
determining which
measurements go with
which tracks.




Data association

» Simple strategy: only pay attention to the
measurement that is “closest” to the
prediction

Source: Lana Lazebnik
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Data association

« Simple strategy: only pay attention to the
measurement that is “closest” to the

prediction
° il
[ ] o
° I °
“les s Lo
o o LS <°
o © o o0°® o

Doesn’t always work...
Alternative: keep track of multiple hypotheses at once.

Source: Lana Lazebnik

http://www.cs.bu.edu/~betke/research/bats/

Tracking: issues

« Initialization

— Often done manually

— Background subtraction, detection can also be used
« Data association, multiple tracked objects

— Occlusions
« Deformable and articulated objects
« Constructing accurate models of dynamics

— E.g., Fitting parameters for a linear dynamics model
* Drift

— Accumulation of errors over time

Drift

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their
Appearance. PAMI 2007.

Source: Lana Lazebnik

Summary

+ Using optical flow to recognize activities

— Low-level feature captures motion patterns in a region
of interest

» Tracking as inference

— Goal: estimate posterior of object position given
measurement

* Linear models of dynamics
— Represent state evolution and measurement models
+ Kalman filters

— Recursive prediction/correction updates to refine
measurement
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