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Tracking

Tuesday, Nov 25

Kristen Grauman

UT‐Austin

Announcements

• My Wed office hours 1‐2 pm 
– (and Thurs 2‐3 pm)

P t 4 t t d d Th D 4• Pset 4 out today, due Thurs. Dec 4
– Auto extension to Tues. Dec 9

Pset 4 overview
Part A: 100 pts
Track a corner through the 

video with feature-based 
matching

Part B: 25 pts
Generalize to multiple tracks, 

allow new tracks to form as 
new vehicles enter the 
frame.

E.C.: bg sub, Kalman filtering

Outline
• Last time: Motion

– Motion field and parallax
– Optical flow, brightness constancy
– Aperture problem

• Today:• Today:
– Using optical flow (dense motion estimates) to 

recognize activities
– Tracking

• Tracking as inference
• Linear models of dynamics
• Kalman filters

Motion estimation techniques
• Direct methods

• Directly recover image motion at each pixel from spatio-temporal 
image brightness variations

• Dense motion fields, but sensitive to appearance variations
• Suitable for video and when image motion is small 

Direct methods: Estimating optical flow

I(x,y,t–1) I(x,y,t)

• Given two subsequent frames, estimate the apparent 
motion field between them.

• Key assumptions
• Brightness constancy:  projection of the same point looks the 

same in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors
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Solving the aperture problem (grayscale image)

• How to get more equations for a pixel?
• Spatial coherence constraint: pretend the pixel’s 

neighbors have the same (u,v)
• If we use a 5x5 window, that gives us 25 equations per pixel

Using optical flow:
recognizing facial expressions

Recognizing Human Facial Expression (1994)
by Yaser Yacoob, Larry S. Davis 

Using optical flow:
recognizing facial expressions

Using optical flow:
action recognition at a distance

• Features = optical flow within a region of interest

• Classifier = nearest neighbors

Challenge: low‐res 
data, not going to 

[Efros, Berg, Mori, & Malik 2003]
http://graphics.cs.cmu.edu/people/efros/research/action/

The 30‐Pixel Man

be able to track 
each limb.

Using optical flow:
action recognition at a distance

Correlation‐based tracking
Extract person‐centered frame window

[Efros, Berg, Mori, & Malik 2003]
http://graphics.cs.cmu.edu/people/efros/research/action/

Using optical flow:
action recognition at a distance

Extract optical flow to describe the region’s motion.

[Efros, Berg, Mori, & Malik 2003]
http://graphics.cs.cmu.edu/people/efros/research/action/
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Using optical flow:
action recognition at a distance

Input
Sequence

M t h dMatched 
Frames

Use nearest neighbor classifier to name the 
actions occurring in new video frames.

[Efros, Berg, Mori, & Malik 2003]
http://graphics.cs.cmu.edu/people/efros/research/action/

Using optical flow:
action recognition at a distance

Input
Sequence

Matched NN 
Frame

Use nearest neighbor classifier to name the 
actions occurring in new video frames.

[Efros, Berg, Mori, & Malik 2003]
http://graphics.cs.cmu.edu/people/efros/research/action/

Do as I do: motion retargeting

• Include constraint for similarity within sequence as well as 
across sequences

Optical flow for tracking?
If we have more than just a pair of frames, we could 

compute flow from one to the next:

…

But flow only reliable for small motions, and we may have 
occlusions, textureless regions that yield bad estimates 
anyway…

…

Motion estimation techniques
• Direct methods

• Directly recover image motion at each pixel from spatio-temporal 
image brightness variations

• Dense motion fields, but sensitive to appearance variations
• Suitable for video and when image motion is small 

• Feature-based methods• Feature-based methods
• Extract visual features (corners, textured areas) and track them 

over multiple frames
• Sparse motion fields, but more robust tracking
• Suitable when image motion is large (10s of pixels)

Feature-based matching for motion

Interesting point
Best matching 
neighborhood

Time t Time t+1
Search 
window

Search window is centered at the point 
where we last saw the feature, in image I1.

Best match = position where we have the 
highest normalized cross-correlation value.
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Feature-based matching for motion

• For a discrete matching search, what are the 
tradeoffs of the chosen search window size?

• Which patches to track?
• Select interest points – e.g. corners

• Where should the search window be placed?
• Near match at previous frame
• More generally, according to expected dynamics of the 

object

Detection vs. tracking

…

t=1 t=2 t=20 t=21

Detection vs. tracking

…

Detection: We detect the object independently in 
each frame and can record its position over time, 
e.g., based on blob’s centroid or detection 
window coordinates

Detection vs. tracking

…

Tracking with dynamics: We use image 
measurements to estimate position of object, but 
also incorporate position predicted by dynamics, 
i.e., our expectation of object’s motion pattern.

Detection vs. tracking

…

Tracking with dynamics: We use image 
measurements to estimate position of object, but 
also incorporate position predicted by dynamics, 
i.e., our expectation of object’s motion pattern.

Tracking with dynamics
• Use model of expected motion to predict where 

objects will occur in next frame, even before seeing 
the image.

• Intent: 
– Do less work looking for the object, restrict the search.g j ,
– Get improved estimates since measurement noise is 

tempered by smoothness, dynamics priors.
• Assumption: continuous motion patterns:

– Camera is not moving instantly to new viewpoint
– Objects do not disappear and reappear in different 

places in the scene
– Gradual change in pose between camera and scene
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Notation reminder

• Random variable with Gaussian probability 
distribution that has the mean vector μ and 
covariance matrix Σ.

),(~ Σμx N

• x and μ are d-dimensional, Σ is d x d.
d=2 d=1

If x is 1-d, we 
just have one 
Σ parameter -

the 
variance: σ2

Tracking as inference
• The hidden state consists of the true parameters 

we care about, denoted X.

• The measurement is our noisy observation that 
results from the underlying state, denoted Y.y g ,

State vs. observation

Hidden state : parameters of interest
Measurement : what we get to directly observe

Tracking as inference
• The hidden state consists of the true parameters 

we care about, denoted X.

• The measurement is our noisy observation that 
results from the underlying state, denoted Y.y g ,

• At each time step, state changes (from Xt-1 to Xt ) 
and we get a new observation Yt.

• Our goal: recover most likely state Xt given
– All observations seen so far.
– Knowledge about dynamics of state transitions.

measurement

Belief: prediction
Belief: prediction

Tracking as inference: intuition

old belief

Corrected prediction

Time t Time t+1

Standard independence assumptions

• Only immediate past state influences 
current state

• Measurements at time i only depend on 
the current state
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• Prediction:
– Given the measurements we have seen up to 

this point, what state should we predict?

Tracking as inference

( )10 ,, −tt yyXP K

• Correction:
– Now given the current measurement, what 

state should we predict?

( )10 tt yy

( )tt yyXP ,,0 K

Tracking as inference
Recursive process:
• Base case: we have an initial prior P(X0) on the state in 

absence of any evidence, which we can correct based 
on the first measurement Y0=y0.

• Given corrected estimate for frame t:
1) Predict for frame t+1
2) Correct for frame t+1

Questions
• How to represent the known dynamics that govern the 

changes in the states?

• How to represent relationship between state and 
measurements, plus our uncertainty in the measurements?

• How to compute each cycle of updates?

Representation: We’ll consider the class of linear
dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.

Linear dynamic model
• Describe the a priori knowledge about 

– System dynamics model: represents evolution 
of state over time, with noise.

);(~ 1 dtt N ΣDxx −

– Measurement model: at every time step we 
get a noisy measurement of the state.

);(~ mtt N ΣMxy

n x n n x 1n x 1

m x n n x 1m x 1

Example: randomly 
drifting points

• Consider a stationary object, with state as position
• Position is constant, only motion due to random 

noise term.
• State evolution is described by identity matrix D=I

);(~ 1 dtt N ΣDxx −

State evolution is described by identity matrix D I

Example: Constant 
velocity (1D points)

measurements

os
iti

on
 

1 d position 

time

states1 
d 

p
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• State vector: position p and velocity v

Example: Constant 
velocity (1D points)
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• Measurement is position only
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Example: Constant 
acceleration (1D points)

Example: Constant 
acceleration (1D points)
• State vector: position p, velocity v, and acceleration a.
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• Measurement is position only
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Questions
• How to represent the known dynamics that govern the 

changes in the states?

• How to represent relationship between state and 
measurements, plus our uncertainty in the measurements?

• How to compute each cycle of updates?

Representation: We’ll consider the class of linear
dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.

The Kalman filter

• Method for tracking linear dynamical models in 
Gaussian noise

• The predicted/corrected state distributions are 
Gaussian
– Only need to maintain the mean and covariance
– The calculations are easy (all the integrals can be 

done in closed form)

Kalman filter
Know prediction of 
state, and next 
measurement 
Update distribution over 
current state.

Know corrected state 
from previous time step, 
and all measurements up 
to the current one 
Predict distribution over 
next state.

Receive 
measurement

Time advances: t++

Time update
(“Predict”)

Measurement update
(“Correct”)

( )10 ,, −tt yyXP K

−−
tt σμ ,

Mean and std. dev.
of predicted state:

( )tt yyXP ,,0 K

++
tt σμ ,

Mean and std. dev.
of corrected state:
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Kalman filter for 1d state

Want to 
represent 
and update

( ) ( )2
10 )(,,, −−
− = tttt NyyxP σμK

( ) ( )2
0 )(,,, ++= tttt NyyxP σμK( ) ( )0 )(,,, tttt yy μ

1D Kalman filter: Prediction
• Have linear dynamic model defining predicted state 

evolution, with noise

• Want to estimate predicted distribution for next state

( ) ( )2)( −−NXP

( )2
1,~ dtt dxNX σ−

• Update the mean:

• Update the variance:

+
−

− = 1tt dμμ

( ) ( )2
10 )(,,, − = tttt NyyXP σμK

2
1

22 )()( +
−

− += tdt dσσσ

1D Kalman filter: Correction
• Have linear model defining the mapping of state 

to measurements:

• Want to estimate corrected distribution given 
latest meas.:

( )2,~ mtt mxNY σ

( ) ( )2
0 )(,,, ++= tttt NyyXP σμK

• Update the mean:

• Update the variance:
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Prediction vs. correction

• What if there is no prediction uncertainty
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• What if there is no measurement uncertainty

tt μμ 0)( tσ

?)0( =mσ

m
yt

t =+μ 0)( 2 =+
tσ

The measurement is ignored!

The prediction is ignored!

Recall: constant velocity example

measurements

tio
n

State is 2d: position + velocity 
Measurement is 1d: position

state

time

po
si

Kalman filter processing
o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

Constant velocity model

on

time

bars:  variance estimates 
before and after measurementspo

si
tio
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Kalman filter processing
o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

Constant velocity model

on

time

bars:  variance estimates 
before and after measurementspo

si
tio

Kalman filter processing
o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

Constant velocity model

on

time

bars:  variance estimates 
before and after measurementspo

si
tio

Kalman filter processing
o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

Constant velocity model

on

time

bars:  variance estimates 
before and after measurementspo

si
tio

Kalman filter: General case (> 1dim)

PREDICT CORRECT

+
−

− = 1ttt xDx ( ) 1−−− Σ+ΣΣ=
tm

T
ttt

T
ttt MMMK

What if state vectors have more than one dimension?

td
T
tttt DD Σ+Σ=Σ +

−
−

1
( )−−+ −+= tttttt xMyKxx

( ) −+ Σ−=Σ tttt MKI

More weight on residual 
when measurement error 
covariance approaches 0.

Less weight on residual as a 
priori estimate error 
covariance approaches 0.

Tracking: issues
• Initialization

– Often done manually

– Background subtraction, detection can also be used

• Data association, multiple tracked objects
O l i– Occlusions

Data association
• We’ve assumed entire 

measurement (y) was cue 
of interest for the state

• But, there are typically 
uninformativeuninformative 
measurements too–clutter.

• Data association:  task of 
determining which 
measurements go with 
which tracks.
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Data association
• Simple strategy: only pay attention to the 

measurement that is “closest” to the 
prediction

Source: Lana Lazebnik

Data association
• Simple strategy: only pay attention to the 

measurement that is “closest” to the 
prediction

Doesn’t always work…
Alternative: keep track of multiple hypotheses at once…

Source: Lana Lazebnik
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Tracking: issues
• Initialization

– Often done manually

– Background subtraction, detection can also be used

• Data association, multiple tracked objects
O l i– Occlusions

• Deformable and articulated objects

• Constructing accurate models of dynamics
– E.g., Fitting parameters for a linear dynamics model

• Drift
– Accumulation of errors over time

Drift

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 
Appearance. PAMI 2007. Source: Lana Lazebnik

Summary
• Using optical flow to recognize activities

– Low-level feature captures motion patterns in a region 
of interest

• Tracking as inference
– Goal: estimate posterior of object position given p j p g

measurement
• Linear models of dynamics

– Represent state evolution and measurement models
• Kalman filters

– Recursive prediction/correction updates to refine 
measurement


