Color

Thursday, Sept 4

Announcements

- · Class website reminder
- http://www.cs.utexas.edu/~grauman/courses/fall2008/main.htm
- · Pset 1 out today

Last time

- Image formation:
 - Projection equations
 - Homogeneous coordinates
 - Lenses
 - Camera parameters' affect on images

Review questions

- Why does the ideal pinhole camera model imply an infinite depth of field?
- Use the perspective projection equations to explain these:

http://www.mzephotos.com/gallery/mammals/rabbit-nose.html

flickr.com/photos/lungstruck/434631076/

Today: Color

- · Measuring color
 - Spectral power distributions
 - Color mixing
 - Color matching experiments
 - Color spaces
 - Uniform color spaces
- · Perception of color
 - Human photoreceptors
 - Environmental effects, adaptation
- · Using color in machine vision systems

Color and light

- Color of light arriving at camera depends on
 - Spectral reflectance of the surface light is leaving
 - Spectral radiance of light falling on that patch
- Color perceived depends on
 - Physics of light
 - Visual system receptors
 - Brain processing, environment

Examples of subtractive color systems

- · Printing on paper
- Crayons
- · Most photographic film

Today: Color

- · Measuring color
 - Spectral power distributions
 - Color mixing
 - Color matching experiments
 - Color spaces
 - Uniform color spaces
- · Perception of color
 - Human photoreceptors
 - Environmental effects, adaptation
- · Using color in machine vision systems

Why specify color *numerically*?

- Accurate color reproduction is commercially valuable
- Many products are identified by color ("golden" arches)
- Few color names are widely recognized by English speakers
 - 11: black, blue, brown, grey, green, orange, pink, purple, red, white, and yellow.
 - Other languages have fewer/more.
 - Common to disagree on appropriate color names.
- Color reproduction problems increased by prevalence of digital imaging – e.g. digital libraries of art.
 - How to ensure that everyone perceives the same color?
 - What spectral radiances produce the same response from people under simple viewing conditions?

orsyth & Ponce

Color matching experiments

 Goal: find out what spectral radiances produce same response in human observers

Color matching experiments

Observer adjusts weight (intensity) for primary lights (fixed SPD's) to match appearance of test light.

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

fter Judd & Wysze

Color matching experiments

- Goal: find out what spectral radiances produce same response in human observers
- Assumption: simple viewing conditions, where we say test light alone affects perception
 - Ignoring additional factors for now like adaptation, complex surrounding scenes, etc.

Color matching

- What must we require of the primary lights chosen?
- How are three numbers enough to represent entire spectrum?

Metamers

- If observer says a mixture is a match → receptor excitations of both stimuli must be equal
- But lights forming a perceptual match still may be physically different
 - Match light: must be combination of primaries
 - Test light: any light
- Metamers: pairs of lights that match perceptually but not physically

Fig from B. Wandell, 199

Grassman's laws

- If two test lights can be matched with the same set of weights, then they match each other:
 - Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$ and $B = u_1 P_1 + u_2 P_2 + u_3 P_3$. Then A = B.
- If we scale the test light, then the matches get scaled by the same amount:
 - Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$. Then $kA = (ku_1) P_1 + (ku_2) P_2 + (ku_3) P_3$.
- If we mix two test lights, then mixing the matches will match the result (superposition):
 - Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$ and $B = v_1 P_1 + v_2 P_2 + v_3 P_3$. Then $A + B = (u_1 + v_1) P_1 + (u_2 + v_2) P_2 + (u_3 + v_3) P_3$.

Here "=" means "matches".

Computing color matches

- How do we compute the weights that will yield a perceptual match for any test light using a given set of primaries?
 - 1. Select primaries
 - Estimate their color matching functions: observer matches series of monochromatic lights, one at each wavelength
 - 3. Multiply matching functions and test light

 $\mathbf{C} = \begin{pmatrix} c_1(\lambda_1) \\ c_2(\lambda_1) \\ c_3(\lambda_1) \end{pmatrix}$

Computing color matches

So, given any set of primaries and their associated matching functions (\mathbf{C}), we can compute weights (\mathbf{e}) needed on each primary to give a perceptual match to any test light \mathbf{t} (spectral signal).

Computing color matches

- Why is computing the color match for any color signal for a given set of primaries useful?
 - Want to paint a carton of Kodak film with the Kodak yellow color.
 - Want to match skin color of a person in a photograph printed on an ink jet printer to their true skin color.
 - Want the colors in the world, on a monitor, and in a print format to all look the same.

dapted from W. Freeman

Image credit: phs org

Today: Color

- · Measuring color
 - Spectral power distributions
 - Color mixing
 - Color matching experiments
 - Color spaces
 - Uniform color spaces
- · Perception of color
 - Human photoreceptors
 - Environmental effects, adaptation
- · Using color in machine vision systems

Standard color spaces

- Use a common set of primaries/color matching functions
- Linear color space examples
 - RGB
 - CIE XYZ
- Non-linear color space
 - HSV

RGB color space

- Single wavelength primaries
- Good for devices (e.g., phosphors for monitor), but not for perception

CIE XYZ color space

- Established by the commission international d'eclairage (CIE), 1931
- Usually projected to display:
 (x,y) = (X/(X+Y+Z), Y/(X+Y+Z))

Distances in color space

 Not necessarily: CIE XYZ is not a uniform color space, so magnitude of differences in coordinates are poor indicator of color "distance".

Uniform color spaces

 Attempt to correct this limitation by remapping color space so that justnoticeable differences are contained by circles
 → distances more perceptually meaningful.

- Examples:
 - CIE u'v'
 - CIE Lab

Today: Color

- · Measuring color
 - Spectral power distributions
 - Color mixing
 - Color matching experiments
 - Color spaces
 - Uniform color spaces
- · Perception of color
 - Human photoreceptors
 - Environmental effects, adaptation
- · Using color in machine vision systems

Color

- Color of light arriving at camera depends on
 - Spectral reflectance of the surface light is leaving
 - Spectral radiance of light falling on that patch
- Color perceived depends on
 - Physics of light
 - Visual system receptors
 - Brain processing, environment

Human photoreceptors -Rods responsible for intensity -Cones responsible for color -Fovea: small region (1 or 2°) at the center of the visual field containing the highest density of cones (and no rods). - Less visual acuity in the periphery

Human photoreceptors

- React only to some wavelengths, with different sensitivity (light fraction absorbed)
- Brain fuses responses from local neighborhood of several cones for perceived color
- Sensitivities vary from person to person, and with age
- Color blindness: deficiency in at least one type of cone

Human photoreceptors

Possible evolutionary pressure for developing receptors for different wavelengths in primates

Osorio & Vorobyev, 1996

Trichromacy

- · Experimental facts:
 - Three primaries will work for most people if we allow subtractive matching; "trichromatic" nature of the human visual system
 - Most people make the same matches for a given set of primaries (i.e., select the same mixtures)

Environmental effects & adaptation

- Chromatic adaptation: we adapt to a particular illuminant
- Assimilation, contrast effects, chromatic induction: nearby colors affect what is perceived; receptor excitations interact across image and time
- Afterimages

Color matching ~= color appearance Physics of light ~= perception of light

Chromatic adaptation

• If the visual system is exposed to a certain illuminant for a while, color system starts to adapt / skew.

- Content © 2008 R.Beau Lotto
- http://www.lottolab.org/articles/illusionsoflight.asp

- Content © 2008 R.Beau Lotto
 http://www.lottolab.org/articles/illusionsoflight.asp

After images

• Tired photoreceptors send out negative response after a strong stimulus

http://www.sandlotscience.com/Aftereffects/Andrus_Spiral.htm

Source: Steve Seitz

Name that color

Blue Red Green Cyan Magenta Black Pink Yellow Orange Violet Brown Purple Cyan Indigo Red Green Blue

High level interactions affect perception and processing.

Today: Color

- · Measuring color
 - Spectral power distributions
 - Color mixing
 - Color matching experiments
 - Color spaces
 - · Uniform color spaces
- · Perception of color
 - Human photoreceptors
 - Environmental effects, adaptation
- Using color in machine vision systems

Color as a low-level cue for CBIR

Blobworld system Carson et al, 1999

Color as a low-level cue for CBIR

Color as a low-level cue for CBIR

Color-based image retrieval

- Given collection (database) of images:
 - Extract and store one color histogram per image
- Given new query image:
 - Extract its color histogram
 - For each database image:
 - Compute intersection between query histogram and database histogram
 - Sort intersection values (highest score = most similar)
 - Rank database items relative to query based on this sorted order

Coming up

- Next time: linear filters
 - Read F&P Chapter 7, sections 7.1, 7.2, 7.5, 7.6

- See Blackboard for additional reading excerpts on filters
- Pset 1 is out, due Sept 18.

