Linear Filters: Part 1

Tuesday, Sept 9

Announcements

* Please put your name in problem set files.

» Updated office hours
—Me: CSA 114
* Wed 1:15 pm — 2:15 pm
e Thurs 2 pm - 3 pm
— Harshdeep: TAY CS Lab
* Mon 1 pm -2 pm
* Fri2 pm—-3pm

Image neighborhoods

* Q: What happens if we reshuffle all pixels within the
images?

% g
e

+ A: Its histogram won’t change.
Point-wise processing unaffected.

* Need to measure properties relative to small
neighborhoods of pixels

Images as functions

*’

Source: S. Seitz

Images as functions

» We can think of an image as a function, f, from
R2to R:
« f(x,y) gives the intensity at position (x,y)
« Realistically, we expect the image only to be defined over a
rectangle, with a finite range:
— f: [ab] x [c,d] > [0, 1.0]

+ A color image is just three functions pasted
together. We can write this as a “vector-valued”

function: rx.y)

f(xy)=|a(x,y)
b(x,y)

Source: S. Seitz

Digital images

« In computer vision we operate on digital (discrete) images:
« Sample the 2D space on a regular grid
* Quantize each sample (round to nearest integer)

« Image thus represented as a matrix of integer values.

o 2D

s w8 |1o1 |es

w [wr Jer |we
o 66 |12 |e2
7

208

8

0

T T,

1D

original

Adapted from S Seitz

Motivation: noise reduction

« In Pset 0 we measured noise in multiple images of
the same static scene.

« How could we reduce the noise, i.e., give an estimate
of the true intensities?

Common types of noise

— Salt and pepper noise:
random occurrences of
black and white pixels

— Impulse noise: random
occurrences of white
pixels

Original Salt and pepper noise

— Gaussian noise:
variations in intensity
drawn from a Gaussian

normal distribution

Impulse noise Gaussian noise

Source: S. Seitz

Ideal Image Moise process Gaussian i.id, (“white™) noise:
firm = Tew + Wew iz) ~ Ny o)

>> noise = randn(size(im)).*sigma;

>> output = im + noise;
Fig: M. Hebert

Effect of
sigmaon
Gaussian
noise:

Image
shows the
noise
values
themselves.

sigma=1

Effect of
sigmaon
Gaussian
noise:

Image
shows the
noise
values
themselves.

sigma=4

Effect of
sigmaon
Gaussian
noise:

Image
shows the
noise
values
themselves.

sigma=
16

Effect of
sigmaon
Gaussian
noise:

This shows
the noise
values
added to
the raw
intensities
of an image.

sigma=1

Effect of
sigmaon
Gaussian
noise

This shows
the noise
values
added to
the raw
intensities
of an image.

sigma=16

Motivation: noise reduction

« In Pset 0 we measured noise in multiple images of
the same static scene.

« How could we reduce the noise, i.e., give an estimate
of the true intensities?

* What if there’s only one image?

First attempt at a solution

+ Let’s replace each pixel with an average of all
the values in its neighborhood
* Assumptions:

« Expect pixels to be like their neighbors
« Expect noise processes to be independent from pixel to pixel

First attempt at a solution

» Let’s replace each pixel with an average of all
the values in its neighborhood

* Moving average in 1D:

Source: S. Marschner]

Weighted Moving Average

Can add weights to our moving average
Weights [1,1,1,1,1] /5

Source: S. Marschner]

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1]/ 16

Source: S. Marschner

Moving Average In 2D

Flx,y]

Glz, y]

Source: S. Seitz

Moving Average In 2D

Flz,y] Glz, y]

Source: S. Seitz

Moving Average In 2D

Flx,y] Glz,y]

8|l 8| 8| 88

Source: S. Seitz

Moving Average In 2D

Flz,y] Glz, y]

Source: S. Seitz

Moving Average In 2D

Flz,y]

8| 8| 8| 8| 8

Source: S. Seitz

Moving Average In 2D

Flx,y] Glz,y]

3
3
2

8
8| 8| 8| 8| 8

gl 8| 8| 8
8

Source: S. Seitz

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

k k
. 1 . .
G[m]=m > > Flitu,j+0]
u=—kv=—k
\)\)
Y Y
Attribute uniform Loop over all pixels in neighborhood

weight to each pixel around image pixel FIi,j]

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

k k
Gli,jl= > > Hlu,vlF[i+u,j+v]
u=—kv=—k)
Non-uniform weights

Correlation filtering
k k
Gli,jl= > > Hlu,v]Fli+u,j+]
u=—kv=—k
This is called cross-correlation, denoted G = H ® F'

Filtering an image: replace each pixel with a linear
combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.

Smoothing by averaging

depicts box filter:
< white = high value, black = low value

original filtered

Averaging filter

» What values belong in the kernel H for the moving
average example?

Flz,y] ® Hlu,v] Glz,y]
11111 o [10]20 mlr;l
il] LTl -
90 [90 | 90 | 90 | 90 9 H
20 90 | 90 | 90 1111
= “box filter”
G=HQ®F

Gaussian filter

» What if we want nearest neighboring pixels to have
the most influence on the output?

This kernel is an
approximation of a
Gaussian function:

1021 1 _u?4e?
1 h(u,v) = ——
27

Source: S Seitz]

Smoothing with a Gaussian

Gaussian filters

What parameters matter here?
Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete
filters use finite kernels

Gaussian filters

* What parameters matter here?
» Variance of Gaussian: determines extent of

smoothing
B, _B
o =2 with o =5 with
30 x 30 30 x 30
kernel kernel

o =5 with 0 =5 with
10x10 30x30
kernel kernel
Matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(“gaussian’ hsize, sigma);

>>

>>

>>
>>

mesh(h); e
imagesc(h); E

outim = imfilter(im, h);
imshow(outim);

Keeping the two Gaussians in play straight...
More noise 2>
a=0.05 a=0.1

a=1 pixel

& |owiay Buiyloows Japim

=2 pixels

Boundary issues

What is the size of the output?
* MATLAB: filter2(g, f, shape)

« shape = ‘full’: output size is sum of sizes of fand g
« shape = ‘same’: output size is same as f
« shape = ‘valid’: output size is difference of sizes of f and g

same valid

Source: S. Lazebnik

Boundary issues

What about near the edge?

« the filter window falls off the edge of the image

* need to extrapolate

» methods:
— clip filter (black)
— wrap around L’ F
— copy edge
— reflect across edge

Source: S. Marschner

Boundary issues

What about near the edge?
« the filter window falls off the edge of the image
* need to extrapolate
* methods (MATLAB):

Filtering an impulse signal

What is the result of filtering the impulse signal
(image) F with the arbitrary kernel H?

Flz,y] Glz,y]

Convolution vs. correlation

Convolution

k k
Gli,jl= > Y Hu,v]F[i—u,j—]

u=—kv=—k
G=HxF

Cross-correlation

kok
Gli,jl= > > Hlu,vlFli+u,j+7]

u=—kv=-k
G=HQF

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

— clip filter (black): imfilter(f, g, 0)
— wrap around: imfilter(f, g, ‘circular’)
— copy edge: imfilter(f, g, ‘replicate’)
— reflect across edge: imfilter(f, g, ‘symmetric’)
Source: S. Marschner|

« Convolution:

— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

k k
Gli,jl= > Y, Hu,v]F[i—u,j—v]

u=—kv=—k
G=HxF 4
Notation for H
convolution
operator
Next time

» More about linear filters

* Reading :
—-F&P Ch7.1,7.2,7.5, 7.6 on filters
— F&P Ch 8 on edges

