
Linear Filters: Part 1

Tuesday, Sept 9

Announcements

• Please put your name in problem set files.

• Updated office hours
– Me:  CSA 114

• Wed 1:15 pm – 2:15 pm 
• Thurs 2 pm – 3 pm

– Harshdeep:  TAY CS Lab
• Mon 1 pm – 2 pm
• Fri 2 pm – 3 pm

Image neighborhoods
• Q: What happens if we reshuffle all pixels within the 

images?

• A:  Its histogram won’t change.                                     
Point-wise processing unaffected.

• Need to measure properties relative to small 
neighborhoods of pixels

Images as functions
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Images as functions
• We can think of an image as a function, f, from 

R2 to R:
• f( x, y ) gives the intensity at position ( x, y ) 
• Realistically, we expect the image only to be defined over a 

rectangle, with a finite range:
– f: [a,b] x [c,d] [0, 1.0]

• A color image is just three functions pasted 
together.  We can write this as a “vector-valued”
function: 

Source: S. Seitz
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Digital images
• In computer vision we operate on digital (discrete) images:

• Sample the 2D space on a regular grid
• Quantize each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.

Adapted from S. Seitz

62 79 23 119 120 105 4 0

10 10 9 62 12 78 34 0

10 58 197 46 46 0 0 48

176 135 5 188 191 68 0 49

2 1 1 29 26 37 0 77

0 89 144 147 187 102 62 208

255 252 0 166 123 62 0 31

166 63 127 17 1 0 99 30
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Motivation: noise reduction

• In Pset 0 we measured noise in multiple images of 
the same static scene.

• How could we reduce the noise, i.e., give an estimate 
of the true intensities?

Common types of noise
– Salt and pepper noise: 

random occurrences of   
black and white pixels

– Impulse noise: random 
occurrences of white 
pixels

– Gaussian noise: 
variations in intensity 
drawn from a Gaussian 
normal distribution

Original

Gaussian noise

Salt and pepper noise

Impulse noise

Source: S. Seitz

Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;
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Motivation: noise reduction

• In Pset 0 we measured noise in multiple images of 
the same static scene.

• How could we reduce the noise, i.e., give an estimate 
of the true intensities?

• What if there’s only one image?

First attempt at a solution
• Let’s replace each pixel with an average of all 

the values in its neighborhood
• Assumptions: 

• Expect pixels to be like their neighbors
• Expect noise processes to be independent from pixel to pixel

First attempt at a solution
• Let’s replace each pixel with an average of all 

the values in its neighborhood
• Moving average in 1D:

Source: S. Marschner

Weighted Moving Average
Can add weights to our moving average
Weights [1, 1, 1, 1, 1]  / 5 

Source: S. Marschner



Weighted Moving Average
Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Moving Average In 2D
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Moving Average In 2D
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Correlation filtering
Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood 
around  image pixel F[i,j]

Attribute uniform 
weight to each pixel

Now generalize to allow different weights depending on  
neighboring pixel’s relative position:

Non-uniform weights

Correlation filtering

Filtering an image: replace each pixel with a linear 
combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the 
weights in the linear combination.

This is called cross-correlation, denoted 

Averaging filter
• What values belong in the kernel H for the moving 

average example?
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Smoothing by averaging
depicts box filter: 
white = high value, black = low value

original filtered

Gaussian filter
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• What if we want nearest neighboring pixels to have 
the most influence on the output?

This kernel is an 
approximation of a 
Gaussian function:

Source: S. Seitz



Smoothing with a Gaussian Gaussian filters
• What parameters matter here?
• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete 
filters use finite kernels

σ = 5 with 
10 x 10 
kernel

σ = 5 with 
30 x 30 
kernel

Gaussian filters
• What parameters matter here?
• Variance of Gaussian: determines extent of 

smoothing

σ = 2 with 
30 x 30 
kernel

σ = 5 with 
30 x 30 
kernel

Matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h);
>> imshow(outim);

outim

More noise 

W
ider sm

oothing kernel 

Keeping the two Gaussians in play straight… Boundary issues
What is the size of the output?
• MATLAB: filter2(g, f, shape)

• shape = ‘full’: output size is sum of sizes of f and g
• shape = ‘same’: output size is same as f
• shape = ‘valid’: output size is difference of sizes of f and g 
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full same valid

Source: S. Lazebnik



Boundary issues
What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

– clip filter (black)
– wrap around
– copy edge
– reflect across edge

Source: S. Marschner

Boundary issues
What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods (MATLAB):

– clip filter (black): imfilter(f, g, 0)
– wrap around: imfilter(f, g, ‘circular’)
– copy edge: imfilter(f, g, ‘replicate’)
– reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

Filtering an impulse signal
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What is the result of filtering the impulse signal 
(image) F with the arbitrary kernel H?

?

Convolution

• Convolution: 
– Flip the filter in both dimensions (bottom to top, right to left)
– Then apply cross-correlation

Notation for 
convolution 
operator

F

H

Convolution vs. correlation
Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Next time

• More about linear filters
• Reading : 

– F&P Ch 7.1, 7.2, 7.5, 7.6 on filters
– F&P Ch 8 on edges


