
Linear Filters: Part 1

Tuesday, Sept 9

Announcements

• Please put your name in problem set files.

• Updated office hours
– Me: CSA 114

• Wed 1:15 pm – 2:15 pm
• Thurs 2 pm – 3 pm

– Harshdeep: TAY CS Lab
• Mon 1 pm – 2 pm
• Fri 2 pm – 3 pm

Image neighborhoods
• Q: What happens if we reshuffle all pixels within the

images?

• A: Its histogram won’t change.
Point-wise processing unaffected.

• Need to measure properties relative to small
neighborhoods of pixels

Images as functions

x

y
f(x,y)

Source: S. Seitz

Images as functions
• We can think of an image as a function, f, from

R2 to R:
• f(x, y) gives the intensity at position (x, y)
• Realistically, we expect the image only to be defined over a

rectangle, with a finite range:
– f: [a,b] x [c,d] [0, 1.0]

• A color image is just three functions pasted
together. We can write this as a “vector-valued”
function:

Source: S. Seitz

(,)
(,) (,)

(,)

r x y
f x y g x y

b x y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Digital images
• In computer vision we operate on digital (discrete) images:

• Sample the 2D space on a regular grid
• Quantize each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.

Adapted from S. Seitz

62 79 23 119 120 105 4 0

10 10 9 62 12 78 34 0

10 58 197 46 46 0 0 48

176 135 5 188 191 68 0 49

2 1 1 29 26 37 0 77

0 89 144 147 187 102 62 208

255 252 0 166 123 62 0 31

166 63 127 17 1 0 99 30

x

y
f(x,y)

2D

1D

Motivation: noise reduction

• In Pset 0 we measured noise in multiple images of
the same static scene.

• How could we reduce the noise, i.e., give an estimate
of the true intensities?

Common types of noise
– Salt and pepper noise:

random occurrences of
black and white pixels

– Impulse noise: random
occurrences of white
pixels

– Gaussian noise:
variations in intensity
drawn from a Gaussian
normal distribution

Original

Gaussian noise

Salt and pepper noise

Impulse noise

Source: S. Seitz

Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

Effect of
sigma on
Gaussian
noise:

Image
shows the
noise
values
themselves.

Effect of
sigma on
Gaussian
noise:

Image
shows the
noise
values
themselves.

Effect of
sigma on
Gaussian
noise:

Image
shows the
noise
values
themselves.

sigma=1

Effect of
sigma on
Gaussian
noise:

This shows
the noise
values
added to
the raw
intensities
of an image.

sigma=16

Effect of
sigma on
Gaussian
noise

This shows
the noise
values
added to
the raw
intensities
of an image.

Motivation: noise reduction

• In Pset 0 we measured noise in multiple images of
the same static scene.

• How could we reduce the noise, i.e., give an estimate
of the true intensities?

• What if there’s only one image?

First attempt at a solution
• Let’s replace each pixel with an average of all

the values in its neighborhood
• Assumptions:

• Expect pixels to be like their neighbors
• Expect noise processes to be independent from pixel to pixel

First attempt at a solution
• Let’s replace each pixel with an average of all

the values in its neighborhood
• Moving average in 1D:

Source: S. Marschner

Weighted Moving Average
Can add weights to our moving average
Weights [1, 1, 1, 1, 1] / 5

Source: S. Marschner

Weighted Moving Average
Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Source: S. Seitz

Correlation filtering
Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood
around image pixel F[i,j]

Attribute uniform
weight to each pixel

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

Non-uniform weights

Correlation filtering

Filtering an image: replace each pixel with a linear
combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.

This is called cross-correlation, denoted

Averaging filter
• What values belong in the kernel H for the moving

average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111
111
111

“box filter”

?

Smoothing by averaging
depicts box filter:
white = high value, black = low value

original filtered

Gaussian filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have
the most influence on the output?

This kernel is an
approximation of a
Gaussian function:

Source: S. Seitz

Smoothing with a Gaussian Gaussian filters
• What parameters matter here?
• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete
filters use finite kernels

σ = 5 with
10 x 10
kernel

σ = 5 with
30 x 30
kernel

Gaussian filters
• What parameters matter here?
• Variance of Gaussian: determines extent of

smoothing

σ = 2 with
30 x 30
kernel

σ = 5 with
30 x 30
kernel

Matlab
>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h);
>> imshow(outim);

outim

More noise

W
ider sm

oothing kernel

Keeping the two Gaussians in play straight… Boundary issues
What is the size of the output?
• MATLAB: filter2(g, f, shape)

• shape = ‘full’: output size is sum of sizes of f and g
• shape = ‘same’: output size is same as f
• shape = ‘valid’: output size is difference of sizes of f and g

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik

Boundary issues
What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:

– clip filter (black)
– wrap around
– copy edge
– reflect across edge

Source: S. Marschner

Boundary issues
What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods (MATLAB):

– clip filter (black): imfilter(f, g, 0)
– wrap around: imfilter(f, g, ‘circular’)
– copy edge: imfilter(f, g, ‘replicate’)
– reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal
(image) F with the arbitrary kernel H?

?

Convolution

• Convolution:
– Flip the filter in both dimensions (bottom to top, right to left)
– Then apply cross-correlation

Notation for
convolution
operator

F

H

Convolution vs. correlation
Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Next time

• More about linear filters
• Reading :

– F&P Ch 7.1, 7.2, 7.5, 7.6 on filters
– F&P Ch 8 on edges

