

So, what scale to choose?

Often we may want to analyze at multiple scales

It depends what we're looking for.

Thresholding

- · Choose a threshold value t
- · Set any pixels less than t to zero (off)
- Set any pixels greater than or equal to t to one (on)

- MATLAB: edge(image, `canny');
- >>help edge

Source: D. Lowe, L. Fei-Fei

Morphological operators

- Change the shape of the foreground regions/ objects.
- · Useful to clean up result from thresholding
- · Basic operators are:
 - Dilation
 - Erosion

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	nt 1	1	1]						
Output Image	1	1								

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	nt				1	↓ 1	1]		
Output Image	1	1	0	1	1	1	1			

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	nt						1	1	1]
Output Image	1	1	0	1	1	1	1	1		

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
									L	
Structuring Elemen	t							1	1	1
									Ţ	
Output Image	1	1	0	1	1	1	1	1	1	1
Note that the object gets bigger and holes are filled.										

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	nt						1	↓ 1	1]
Output Image	0	0	0	0	0	1	0	0		

Morphology operators on grayscale images

- Dilation and erosion typically performed on binary images.
- If image is grayscale: for dilation take the neighborhood max, for erosion take the min.

Summary Filters allow local image neighborhood to influence our description and features

- Smoothing to reduce noise
- Derivatives to locate contrast, gradient
- Templates, matched filters to find designated pattern.
- Edge detection processes the image gradient to find curves, or chains of edgels.
- Binary image analysis useful to manipulate regions of interest
 - Connected components
 - Morphological operators

Summary							
Operations, tools	Derivative filters Smoothing, morphology Thresholding Connected components Matched filters Histograms						
 Features, representations 	Edges, gradients Blobs/regions Color distributions Local patterns Textures (next)						

Next									
Texture: read F&P Ch 9, Sections 9.1, 9.3									