Edges and Binary Images

Tuesday, Sept 16

Review

* Thought question: how could we compute a
temporal gradient from video data?

« What filter is likely to have produced this
image output?

- -
- g |
»
P (=
original filtered output

|

&q‘
.. 5 x 5 median filtelr
|’ .2 Al
.0 l <
‘ . |
) ('] | ‘e
WO Bual

25 x 25 median filter 50 x 50 median filter

Edge detection

» Goal: map image from 2d array of pixels to a set of
curves or line segments or contours.

* Why?
-~
-; [V Q’: f-l._.:?
< Hoouyp

-~

Figure from J. Shotton et al., PAMI 2007

» Main idea: look for strong gradients, post-process

Image gradient

The gradient of an image:
— [of of
vi= 5 5]

The gradient points in the direction of most rapid change in intensity

vi=[3L0] I Msz[g%
I oy I

V=
The gradient direction (orientation of edge normal) is given by:
— —1(9f ,0f
6 = tan (Ty /%)

The edge strength is given by the gradient magnitude

V71 = /(GD* + (4)?

Slide credit S. Seitz

Derivative of Gaussian filter
(I®g)®h =1®(g®h)
/

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133

0.0219 0.0983 0.1621 0.0983 0.0219 ® l _l
0.0133 0.0596 0.0983 0.0596 0.0133

0.0030 0.0133 0.0219 0.0133 0.0030

We can smooth and take the
derivative with one filter, that is, 4'\

with one convolution pass. g

Laplacian of Gaussian

2
Consider %z(h * f)

f i ' 1
/
0 20 %00 B0 B0 1000 1200 1400 1
92 h ?E-""/‘:I_ f\ Laplacian of Gaussian
B2 2 \f operator
i
N
92 g I\
(81 h) *f é'” e H s t f{._._ N S—
¢ \
200 400 L B0 1000 1200 1400 1600 1800 2000

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

Laplacian of Gaussian

derivative of Gaussian
9 V2he(u,v)

—ho(u,v)
9z i
W
W

» vZ2is the Laplacian operator:

o 92
VA= GEt ok

Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast
3. Edge localization

Determine which local maxima from filter output are
actually edges vs. noise

* Threshold, Thin

Effect of 0 on Gaussian smoothing

Recall: parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel, and controls the amount of smoothing.

L]

Effect of o on derivatives

o =1 pixel o =3 pixels

The apparent structures differ depending on
Gaussian’s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected

So, what scale to choose?

It depends what we’re looking for.

Often we may want to analyze at multiple scales.
11 £

Too fine of a scale...can’t see the forest for the trees.
Too coarse of a scale...can't tell the maple grain from the cherry.

Thresholding

+ Choose a threshold value t
+ Set any pixels less than t to zero (off)
» Set any pixels greater than or equal to t to one (on)

Original image

Gradient magnitude image

Thresholding gradient with a lower threshold
_'.g /- .| ; - AN —. 1

Thresholding gradient with a higher threshold
‘ ‘ L l

{ v

Canny edge detector

» Filter image with derivative of Gaussian
* Find magnitude and orientation of gradient
* Non-maximum suppression:
— Thin multi-pixel wide “ridges” down to single pixel
width
» Linking and thresholding (hysteresis):
— Define two thresholds: low and high
— Use the high threshold to start edge curves and
the low threshold to continue them

« MATLAB: edge(image, “canny’);
e >>help edge

Source: D. Lowe, L. Fei-Fei

The Canny edge detector

original image (Lena)

Source: S. Seitz

The Canny edge detector

norm of the gradient

The Canny edge detector

thresholding

The Canny edge detector

How to turn
these thick
regions of the
gradient into
curves?

Non-maximum suppression

]] L
P
L] L] q L]
Gradient
L] * o e L
r
L] L] L] .

Check if pixel is local maximum along gradient direction,
select single max across width of the edge
* requires checking interpolated pixels p and r

The Canny edge detector

Problem:
pixels along
this edge
didn’t
survive the
thresholding

thinning
(non-maximum suppression)

Hysteresis thresholding

» Check that maximum value of gradient value
is sufficiently large
—drop-outs? use hysteresis

« use a high threshold to start edge curves and a
low threshold to continue them.

Source: S. Seitz

Object boundaries vs. edges

Background Texture Shadows

Possible to
learn from
humans which
combination of
features is
most indicative -
of a “good”
contour?

b i) - 3
N e {

Hysteresis thresholding

! L]._l ' llz_,J i'

original image

high threshold low threshold hysteresis threshold

(strong edges) (weak edges)

Source: L. Fei-Fei

Edge detection is just the beginning...

image human segmentation gradient magnitude

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Source: L. Lazebnik

Human-marked segment boundaries

[D. Martin et al. PAMI 2004]

What features are responsible for
perceived edges?

IE OE BG cG 1 TG

Image Imtensity

(]

s e I KL A W%J SN

MMAJNJJWMWLM\AFJ

Non-Boundaries

Feature profiles (oriented energy, brightness, color, and texture
gradients) along the patch’s horizontal diameter

[D. Martin et al. PAMI 2004]

Image

BG+CG+TG

Human

[D. Martin et al. PAMI 2004]

Binary images

oA €

adfs el) o

Binary images

* Two pixel values
— Foreground and background
— Mark region(s) of interest

Thresholding

» Given a grayscale image or an intermediate matrix >
threshold to create a binary output.

Example: edge detection

N\

Gradient magnitude

Looking for pixels where gradient is strong.

fg_pix = find(gradient_mag > t);

Thresholding

+ Given a grayscale image or an intermediate matrix >
threshold to create a binary output.

Example: background subtraction

Looking for pixels that differ significantly
from the “empty” background.

fg_pix = find(diff > t);

Thresholding

» Given a grayscale image or an intermediate matrix >
threshold to create a binary output.

Example: intensity-based detection

' N

fg_pix = find(im < 65);

Looking for dark pixels

Thresholding

+ Given a grayscale image or an intermediate matrix >
threshold to create a binary output.

Example: color-based detection

fg_pix = find(hue > tl1 & hue < t2);

Looking for pixels within a certain hue range.

Issues

* How to demarcate multiple
regions of interest?
— Count objects

— Compute further features per
object

* What to do with “noisy” binary
outputs?
— Holes
— Extra small fragments

Connected components

« ldentify distinct regions of “connected pixels”

¢) binary image and labeling, expanded for viewing

Shapiro and Stockman

Connectedness

» Defining which pixels are considered neighbors

1 S 1
@ o =) m | oo =
4

4-connected 8-connected

Connected components

» We'll consider a sequential
algorithm that requires only
2 passes over the image.

* Input: binary image

* Output: “label” image,
where pixels are numbered
per their component

* [Note, in this example,
“foreground” is denoted with
black.]

Sequential connected components

+ Labeling a pixel only requires to
consider its prior and superior
neighbors.

+ It depends on the type of
connectivity used for foreground
(4-connectivity here)

Same object MNew object

@ (o)
‘What happens in these cases?

W =

N‘M’m

Equivalence table

Slide from J. Neira

Sequential connected components

+ Process the image from left to

T[T
right, top to bottom. 322222 AR
1. If the next pixel to process is 1- 1 S[5[5[5 H
pixel Already processed Eg g g L3 52.-1 Z
I -1. If only one of its neighbors .-

| ||
L et : I
(superior or left) is 1-pixel, copy =
its label. .. "

2. 'f both are, and have the same
label, copy it

43 If they have different labels:

superior? smallest? lgi s, 8}
1. Copy the label from the Y
prior
2. Reflect the change in the
table of equivalences,

+ Re-label with the smallest of
equivalent labels
* Pixels of the same segment

.4 Otw, assign a new label always have the same label

2. More pixels? Go to step 1,

Region properties

+ Given connected components, can compute
simple features per blob, such as:
— Area (num pixels in the region)

— Centroid (average x and y position of pixels in the region)
— Bounding box (min and max coordinates)

* How could such features be useful?

Issues

* How to demarcate multiple
regions of interest?
— Count objects

— Compute further features per
object

* What to do with “noisy” binary
outputs?

— Holes

— Extra small fragments

Dilation

» Expands connected components
» Grow features
+ Fill holes

Before dilation After dilation

Morphological operators

» Change the shape of the foreground regions/
objects.

+ Useful to clean up result from thresholding

» Basic operators are:
— Dilation
— Erosion

Erosion

» Erode connected components
+ Shrink features

* Remove bridges, branches, noise

Before erosion

After erosion

Structuring elements

* Masks of varying shapes and sizes used to
perform morphology, for example:

» Scan mask across foreground pixels to
transform the binary image

>>help strel

Dilation vs. Erosion

At each position:

+ Dilation: if current pixel is foreground, OR the
structuring element with the input image.

Example for Dilation (1D)

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘1 ‘1 |

L
S ing Elefrik
tructuring e g(x) = f(x)®SE

Output Image |1 ‘1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Adapted from T. Moeslund

Example for Dilation

inputimage {1 Jo Jo [o [1 [1 1 Jo [1 [1]
1
Structuring Elementm

Output Image |1 ‘1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Dilation

Input image |1 ‘0 ‘0 ‘O ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |

Structuring Element IIIZ[I

Output Image |1 ‘1 ‘0‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘1 ‘1 |

Structuring Element m

Output Image |1 ‘1 ‘0 ‘0 ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 "I ‘0 ‘1 ‘1 |
[é@

Output Image |1 ‘1 ‘0 ‘1 ‘1 ‘1 ‘ ‘ ‘ ‘ |

Structuring Element

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 "I ‘1 ‘1 ‘0 ‘1 ‘1 |
RRE

Output Image |1 ‘1 ‘0 ‘1 ‘1 ‘1 ‘1 ‘ ‘ ‘ |

Structuring Element

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |
[ém

!

Output Image |1 ‘1 ‘0 ‘1 ‘1 ‘1 ‘1 "I ‘ ‘ |

Structuring Element

Example for Dilation

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |
[im

Output Image |1 ‘1 ‘0 ‘1 ‘1 ‘1 ‘1 ‘1 ‘ ‘ |

Structuring Element

Example for Dilation

Input image |1 ‘0 ‘0 ‘O ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |
[i[l

outputimage {1 [1 [o [1 [1 J1 [1 1 [1 1]

Structuring Element

Note that the object gets bigger and holes are filled.

>> help indilate

Dilation vs. Erosion

At each position:

« Dilation: if current pixel is foreground, OR the
structuring element with the input image.

+ Erosion: if every pixel under the structuring
element’s nonzero entries is foreground, OR
the current pixel with S.

Example for Erosion (1D)

Input image |1 ‘0 ‘0 ‘O ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |

4

Structuring Element l

g(x) = f (x)OSE

Output Image | 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Erosion (1D)

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘1 ‘1 |

4

Structuring Element l

g(x) = f (x)OSE

Output Image |0 ‘O ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Erosion

inputimage {1 o Jo [o [1 [1 [1 Jo [1 [1]
1
Structuring Element EII[I

!

Output Image |0 ‘0 ‘0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Erosion

inputimage {1 Jo Jo [o [1 [1 1 Jo [1 [1]
1
Structuring Element II[EI

!

Output Image |0 ‘O ‘0 ‘0 ‘ ‘ ‘ ‘ ‘ ‘ |

Example for Erosion

Input image |1 ‘0 ‘0 ‘O ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 |

Structuring Element [E[I

Output Image |0 ‘0 ‘0 ‘0 ‘0 ‘ ‘ ‘ ‘ ‘ |

Example for Erosion

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘O ‘1 ‘1 |

Structuring Element IIII[I

Output Image |0 ‘O ‘0 ‘0 ‘0 ‘1 ‘ ‘ ‘ ‘ |

Example for Erosion

Input image |1 ‘0 ‘0 ‘0 ‘1 ‘1 "I ‘0 ‘1 ‘1 |

Structuring Element [II[I

Output Image |0 ‘O ‘0 ‘O ‘0 ‘1 ‘0 ‘ ‘ ‘ |

Example for Erosion

Input image |1 ‘0 ‘0 ‘0 "I ‘1 ‘1 ‘0 ‘1 ‘1 |

Structuring Element [[[I

ouputimage [0 [0 Jo Jo Jo [1 JoJo [|]

Example for Erosion

inputimage {1 o Jo [o [1 [1 [1 Jo [1 [1]
:
Structuring Element [[EI

!

Output Image |O ‘O ‘0 ‘O ‘0 ‘1 ‘0 ‘0 ‘0 ‘ |

Example for Erosion

inputimage {1 Jo Jo [o [1 [1 1 Jo [1 [1]
:
Structuring Element [[[

!

outputimage [0 0 [0 Jo Jo 1 Jo Jo Jo [1]

Note that the object gets smaller

>> help imerode

Opening

» Erode, then dilate
* Remove small objects, keep original shape

Before opening After opening

Closing

* Dilate, then erode
« Fill holes, but keep original shape

Before closing After closing

Morphology operators on
grayscale images
+ Dilation and erosion typically performed on binary
images.

« Ifimage is grayscale: for dilation take the
neighborhood max, for erosion take the min.

54 % % ! '
P&'\h—-. .

original dilated

-

eroded

Matlab

« N = hist(Y,M)
e L = bwlabel (BW,N);
« STATS = regionprops(L,PROPERTIES) ;

- "Area”

- “Centroid*

- “BoundingBox*

- “Orientation®, ..
e IM2 = imerode(IM,SE);
« IM2 = imdilate(IM,SE);
« IM2 = imclose(IM, SE);
= IM2 = imopen(IM, SE);

Example using binary image analysis:

segmentation of a liver

—— (™ T 5 o
/ ‘ Threshold B M Extract Largest
W . Region
h W E
s “f B Extract Largest
Region Filling Region
Slide credit: Li Shen Application by Jie Zhy. Cornell University

Example using binary image analysis:
Bg subtraction + blob detection

Bg subtraction + blob detection

University of Southern California
http://iris.usc.edu/~icohen/projects/vace/detection.htm

Example using binary image analysis:

Summary

« Filters allow local image neighborhood to influence our
description and features

— Smoothing to reduce noise
— Derivatives to locate contrast, gradient
— Templates, matched filters to find designated pattern.

» Edge detection processes the image gradient to find
curves, or chains of edgels.

« Binary image analysis useful to manipulate regions of
interest
— Connected components

— Morphological operators

Summary

» Operations, tools

Derivative filters
Smoothing, morphology
Thresholding
Connected components
Matched filters
Histograms

* Features,
representations

1818113101 A

Edges, gradients
Blobs/regions
Color distributions
Local patterns
Textures (next)

Next

e Texture: read F&P Ch 9, Sections 9.1, 9.3

