Fitting

Thursday, Sept 24

Last time

- Grouping / segmentation to identify coherent image regions
 - Clustering algorithms
 - K-means
 - Graph cuts; normalized cuts criterion
 - Feature spaces
 - Color, intensity, texture, position...

Review

• What is the objective function for k-means; that is, what does the algorithm try to minimize?

$$\sum_{\text{clusters } i} \quad \sum_{\text{points p in cluster } i} \|p - c_i\|^2$$

 The best assignment of points to clusters would minimize the total distances between points and their assigned (nearest) centers.

Review

 Assuming we use a fully connected graph, what is the time complexity of computing the affinities for a graph cuts-based segmentation?

Fitting

· Want to associate a model with observed features

For example, the model could be a line, a circle, or an arbitrary shape.

Fitting

- Choose a parametric model to represent a set of features
- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point
- Three main questions:
 - What model represents this set of features best?
 - · Which of several model instances gets which feature?
 - · How many model instances are there?
- · Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

Source: L. Lazebni

Example: Line fitting

Why fit lines?
 Many objects characterized by presence of straight lines

Wait, why aren't we done just by running edge detection?

Difficulty of line fitting:

- Extra edge points (clutter), multiple models:
 - which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - how to find a line that bridges missing evidence?
- **Noise** in measured edge points, orientations:
 - how to detect true underlying parameters?

Voting

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.
- Ok if some features not observed, as model can span multiple fragments.

Fitting lines

- Given points that belong to a line, what is the line?
- · How many lines are there?
- · Which points belong to which lines?
- Hough Transform is a voting technique that can be used to answer all of these

Main idea:

- Record all possible lines on which each edge point lies.
- Look for lines that get many votes.

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

- $\bullet\,\,$ A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b
- What does a point (x₀, y₀) in the image space map to?
 - Answer: the solutions of $b = -x_0m + y_0$
 - this is a line in Hough space

Slide credit: Steve Seit

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b
- What does a point (x₀, y₀) in the image space map to?
 - Answer: the solutions of $b = -x_0 m + y_0$
 - this is a line in Hough space

Finding lines in an image: Hough space

What are the line parameters for the line that contains both $(x_0,\,y_0)$ and $(x_1,\,y_1)$?

• It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

Finding lines in an image: Hough algorithm

How can we use this to find the most likely parameters (m,b) for the most prominent line in the image space?

- Let each edge point in image space vote for a set of possible parameters in Hough space
- Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.

Polar representation for lines

Issues with usual (m,b) parameter space: can take on infinite values, undefined for vertical lines.

d : perpendicular distance from line to origin

heta: angle the perpendicular makes with the x-axis

 $x\cos\theta - y\sin\theta = d$

Point in image space → sinusoid segment in Hough space

Hough transform algorithm

Using the polar parameterization:

$$x\cos\theta - y\sin\theta = d$$

Basic Hough transform algorithm

- 1. Initialize H[d, θ]=0
- 2. for each edge point I[x,y] in the image $for \ \theta = 0 \ to \ 180 \ \ /\!/ \ some \ quantization$

 $d = x \cos \theta - y \sin \theta$ H[d, \theta] += 1

3. Find the value(s) of (d, θ) where H[d, θ] is maximum
4. The detected line in the image is given by $d = x\cos\theta - y\sin\theta$

Hough line demo

Time complexity (in terms of number of votes)?

Source: Steve Seitz

Example: Hough transform for straight lines

Bright value = high vote count Black = no votes

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image $\theta = \text{gradient at } (x,y)$

$$d = x \cos \theta - y \sin \theta$$

$$H[d, \theta] += 1$$

- 3 cama
- 4. same

(Reduces degrees of freedom)

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y) H[d, θ] += 1

- same
- 4. same

(Reduces degrees of freedom)

Extension 2

give more votes for stronger edges (use magnitude of gradient)

Extension 3 • change the sampling of (d, θ) to give more/less resolution

The same procedure can be used with circles, squares, or any other change.

Hough transform for circles

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For a fixed radius r, unknown gradient direction

Hough transform for circles

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For a fixed radius r, unknown gradient direction

Hough transform for circles

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r, unknown gradient direction

Hough transform for circles

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r, unknown gradient direction

Hough transform for circles

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r, known gradient direction

Hough transform for circles

For every edge pixel (x,y):

For each possible radius value *r*:

For each possible gradient direction θ : // or use estimated gradient

$$a = x - r \cos(\theta)$$

$$b = y + r \sin(\theta)$$

$$H[a,b,r] += 1$$

end

end

Example: detecting circles with Hough

Crosshair indicates results of Hough transform, bounding box found via motion differencing.

Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Example: detecting circles with Hough

Coin finding sample images from: Vivek Kwatr

Voting: practical tips

- Minimize irrelevant tokens first (take edge points with significant gradient magnitude)
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Vote for neighbors, also (smoothing in accumulator array)
- Utilize direction of edge to reduce free parameters by 1
- To read back which points voted for "winning" peaks, keep tags on the votes.

Hough transform: pros and cons

Pros

- All points are processed independently, so can cope with occlusion
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- · Quantization: hard to pick a good grid size

Generalized Hough transform

 What if want to detect arbitrary shapes defined by boundary points and a reference point?

At each boundary point, compute displacement vector: $\mathbf{r} = \mathbf{a} - \mathbf{p}_i$.

For a given model shape: store these vectors in a table indexed by gradient orientation θ .

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Generalized Hough transform

To detect the model shape in a new image:

- · For each edge point
 - Index into table with its gradient orientation θ
 - Use retrieved r vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Application in recognition

 Instead of indexing displacements by gradient orientation, index by "visual codeword"

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Course: L Lozobnii

Implicit shape models: Training

Build codebook of patches around extracted interest points using clustering (more on this later in the course)

Implicit shape models: Training

- Build codebook of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry

Implicit shape models: Training

- Build codebook of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry
- 3. For each codebook entry, store all positions it was found, relative to object center

Implicit shape models: Testing

- Given test image, extract patches, match to codebook entry
- 2. Cast votes for possible positions of object center
- 3. Search for maxima in voting space

Summary

- **Grouping/segmentation** useful to make a compact representation and merge similar features
 - associate features based on defined similarity measure and clustering objective
- **Fitting** problems require finding any supporting evidence for a model, even within clutter and missing features.
- associate features with an explicit model
- Voting approaches, such as the Hough transform, make it possible to find likely model parameters without searching all combinations of features.
- Hough transform approach for lines, circles, ..., arbitrary shapes defined by a set of boundary points, recognition from patches.

Next

- Tuesday 9/29/08
 - Background modeling and Bayesian classification
 - Guest lecture by Professor Aggarwal
- Thursday 10/2/08
 - No class
- Next week: my office hours cancelled
- Harshdeep still available