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SegmentationSegmentation

Segmentation of images is the separation of 
pixels into different categories depending upon 
their intensities and/or other contextual 
information. We will pose this problem as 
Background Vs. Foreground

Segmentation process is fairly simple for black 
and white or gray scale images, using a 
“threshold” one is able separate the foreground 
from the background. 
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ExampleExample
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Represent FG & BG by Single ValuesRepresent FG & BG by Single Values

Simple thresholding can do the separation

BG FG

I(ui,vi) > T

T
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Segmentation Contd.Segmentation Contd.

When one is considering a sequence of 
images, and one is interested in 
separating the foreground and the 
background, one may use the mean at 
the pixel or median of the pixel to get a 
good estimate of the intensity at the 
given pixel. This process works for 
simple cases.
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Original VideoOriginal Video
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Mean & Median ImagesMean & Median Images

Mean Median
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Segmentation cont.Segmentation cont.

However, for more robust segmentation, 
one may assume that the intensity for the 
background and the foreground  each is 
described by a probability density 
function. 
One may use Bayesian Decision Theory 
for separating the foreground and 
background.  
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Prior probability Prior probability 

In this B vs. F example, let    denote the 
state of nature

= Background

= Foreground

Prior (a priori) probabilities
Reflects knowledge of what the next pixel 
might be before the pixel appears

assuming 2 classes

ω

1ω
2ω

1 2( ), ( )P Pω ω

1 2( ) ( ) 1,P Pω ω+ =
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Decision Using Only PriorsDecision Using Only Priors

Decide on the type of the “pixel” without 
being allowed to know the intensity 
Decision Rule

Decide       if 
Decide       if

This rule decides on the same class for 
all pixels!
But under these conditions, no other 
classifier can perform better.

1 2( ) ( )P Pω ω>

1 2( ) ( )P Pω ω<
1ω
2ω
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Density FunctionsDensity Functions

Probability density functions, where                
denotes the intensity, l and m indicate 
pixel position. In the most general case 
one can assume that each pixel has 
different probability density.

1( | )lp x ω 2( | )mp x ω

x
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A Practical Decision ScenarioA Practical Decision Scenario
Classify based on some feature, say intensity,    
of the pixel samples x
We will capture the variability of this feature 
using a continuous class-conditional probability 
distribution ( | )p x ω
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BayesBayes RuleRule

Bayes Rule states:

is the likelihood of x being in class ωj
is the prior probability of class ωj

ensures that             is a 

valid posterior probability function that sums 

to one. 

( | ) ( )
( | )

( )
j j
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p x P
P x

p x
ω ω
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= ∑ ( | )jP xω

( )| jp x ω
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BayesBayes Decision RuleDecision Rule

Bayes decision rule:
Select

i.e.

If                           decision is based entirely 
on priors

If                    decision is based entirely on 
likelihoods

Bayes rule combines both to achieve 
minimum probability of error

1 1 2if ( | ) ( | )P x P xω ω ω>

1 1 2 2( | ) ( ) ( | ) ( )p x P p x Pω ω ω ω>

1 2( | ) ( | )p x p xω ω=

1 2( ) ( )P Pω ω=
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Levels of DifficultyLevels of Difficulty

One knows probability density functions 
and a priori probabilities.
One estimates these probabilities from 
samples. One may assume normal 
distributions or more general forms
You do not have a way of estimating 
these probabilities, you pose it as an 
optimization problem or a clustering 
problem.
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About About BayesBayes RuleRule

Bayes Rule is derived from the joint 
distribution

In words, Bayes rule says

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

, | |

|
|

j j j j

j j
j

p x P x p x p x P

p x P
P x

p x

ω ω ω ω

ω ω
ω

= =

∴ =

*likelihood priorposterior
evidence

=
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Likelihood: p(x|ωj) simply denotes that all other 
things being equal, the category ωj for which 
p(x|ωj) is large is more “likely” to be the 
category

Evidence: p(x) is simply a scale factor to ensure 
that  P(ωj|x) is a valid probability function. 

Bayes rule converts the prior and the likelihood 
to a posterior probability, which can now be 
used to make decisions

BayesBayes Rule (cont.)Rule (cont.)
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BayesBayes Rule (cont.)Rule (cont.)
Note that the product of likelihood and prior 
probabilities governs the shape of the posterior

Decision Rule:

1

2

( ) 2 /3
( ) 1/3
P
P

ω
ω

=
=

1 1 2 2if ( | ) ( | ) else P x P xω ω ω ω>
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Error AnalysisError Analysis

Average probability of error is

If P(error|x) is as small as possible for 
every x, the above integral will be 
minimized
Hence using Bayes rule 

1 2

2 1

( | )  
( | )

( | )  
P x

P error x
P x

ω ω
ω ω

⎧
= ⎨

⎩

if we decide
if we decide

( ) ( , ) ( | ) ( )P error P error x dx P error x p x dx
∞ ∞

−∞ −∞
∫ ∫= =

[ ]1 2( | ) min ( | ), ( | )P error x P x P xω ω=
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Variations of the Variations of the BayesBayes RuleRule

Bayes decision rule:
Select

i.e.

If                           decision is based entirely 
on priors

If                    decision is based entirely on 
likelihoods

Bayes rule combines both to achieve 
minimum probability of error

1 1 2if ( | ) ( | )P x P xω ω ω>

1 1 2 2( | ) ( ) ( | ) ( )p x P p x Pω ω ω ω>

1 2( | ) ( | )p x p xω ω=

1 2( ) ( )P Pω ω=
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UnivariateUnivariate DensityDensity

A Univariate normal density  ( ) ( )2,p x N μ σ∼

( )
21 1exp

22
xp x μ

σπσ
⎡ ⎤−⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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UnivariateUnivariate DenistyDenisty (cont.)(cont.)

Expected value
Points tend to cluster around the mean

Variance
Measure of spread of values 

Entropy
Measure of uncertainty
Normal has max. entropy of all distributions given 
mean and variance

[ ] ( )E x xp x dxμ
∞

−∞
∫≡ =

( ) ( ) ( )2 22 E x x p x dxσ μ μ
∞

−∞
∫⎡ ⎤≡ − = −⎣ ⎦

( )( ) ( ) ( )lnH p x p x p x dx
∞

−∞
∫= −
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d-dimensional normal density

x is a d-component column vector

μ is the d-component mean vector

Σ is the d-by-d covariance matrix and |Σ|
and Σ-1 are its determinant and inverse, 
respectively

Multivariate DensityMultivariate Density

( ) ( ),p N∼ μ Σx

( )
( )

( ) ( )1
/ 2 1/ 2
1 1exp

22
t

dp
π

−⎡ ⎤= − − −⎢ ⎥⎣ ⎦Σ
μ Σ μx x x
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Parameters of the multivariate normalParameters of the multivariate normal

Mean

Computed component-wise; i.e. 

Covariance Matrix

Always symmetric and positive semidefinite
is variance of xi

implies that xi and xj are statistically 
independent 

[ ]i iEμ = x

( )( )ij i i j jE x xσ μ μ⎡ ⎤= − −⎣ ⎦

iiσ
0ijσ =

( )( ) ( )( ) ( )t tE p d⎡ ⎤≡ − − = − −⎣ ⎦ ∫Σ x x x x x xμ μ μ μ

[ ] ( )E p dμ ≡ = ∫x x x x
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Represent FG & BG by Single DistributionsRepresent FG & BG by Single Distributions

FG and BG are generated from single 1D normal distributions 
We are able to estimate the parameters (μi, σi) from the training 
sequences

p(I(u,v)|BG) p(I(u,v)|FG)
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Represent FG & BG by Single DistributionsRepresent FG & BG by Single Distributions

Assume the prior probabilities are equal
belongs to FG if ( ( , ) | ) ( ) ( ( , ) | ) ( )

( ( , )) ( ( , ))
i j i j

i j i j

p I u v FG P FG p I u v BG P BG
p I u v p I u v

>( , )i jI u v

T

BG FG
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Multivariate Normal  Density (cont.)Multivariate Normal  Density (cont.)

Loci of points of constant density are 
hyper-ellipsoids of the form

is the Mahalanobis
distance (squared) from x to μ

Volume of hyperellipsoid

( ) ( )1t −− −μ Σ μx x

( ) ( )2 1tr −= − −μ Σ μx x

( )
( )

1/ 2

/ 2
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d dd
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⎧
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⎜ ⎟⎪ ⎝ ⎠⎩

Σ

28

The Real SituationsThe Real Situations

In stead of the entire background, the values of a 
background pixel over time can be modeled by a 
single or a mixture of Gaussians

Due to the motion of objects, by pixel foreground 
model is usually not available 
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The Real Situations (contThe Real Situations (cont’’d)d)

Given a controlled sequence with only background values, 
we can train a Gaussian for each pixel location

Without the knowledge of priors and foreground conditional 
probability, we can threshold on the 
Z-value to perform background subtraction

1
1/ 23/ 2

2

2

:
1 1( ( , ) | ) exp[ ( ( , ) ) ( ( , ) )]

2(2 )

:
( , )1 1( ( , ) | ) exp[ ( ) ]
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T
i j i j ij i i j ij
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Color image

p u v BG u v u v

Grayscale image
I u v

p I u v BG

π
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σπσ
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The Real Situations (contThe Real Situations (cont’’d)d)

In the context of color image, the Mahalanobis distance is 
defined as:  

The Mahalanobis distance implies the probability of the test 
pixel value belonging to the background model 
ex: Illustration of BG subtraction in grayscale case

1( ( , )) ( ( , ) ) ( ( , ) )T
M i i i j ij ij i j ijD u v u v u v−= − −ΣI I μ I μ

T

BG FG

T

BGFG I( , )i ju v
?
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ResultsResults
Test image FG image, TM = 4

FG image, TM = 100FG image, TM = 20
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Example 1Example 1
Consider the given class conditional probability 
density functions:

where u(x) is the unit step function:

A priori probabilities:

1

2

1( | ) [ ( ) ( 2.5)]
2.5
1( | ) [ ( 2) ( 4)]
2

p x u x u x

p x u x u x

ω

ω

= − −

= − − −

( ) 1, 0
0,

u x x
otherwise

= ≥
=

   
        

1 2( ) ( ) 1 2P Pω ω= =
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Example 1 (contd.)Example 1 (contd.)

Plots of various probabilities:

2 42.5

0.4
0.5

1( | )p x ω
2( | )p x ω

p(x)

2 2.5 40

0

1 1 2 2( ) ( | ) ( ) ( | ) ( )p x p x P p x Pω ω ω ω= +

0.20

0.45

0.25

x →

x→ 3434

Example 1 (contd.)Example 1 (contd.)

Observe that there will be error in classification 
for   2 < x < 2.5, if the true class is      , because 
the Bayes classifier will decide       since

for this region

( | ) ( )( | )
( )
i i

i
p x PP x

p x
ω ωω =Posterior

Probabilities:

2 42.5

4/9

5/9

1( | )P xω 2( | )P xω

0

1ω
2ω

2 1( | ) ( | )P x P xω ω>

1

x→
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Example 1 (contd.)Example 1 (contd.)

1
2.5

1 1
2

2.5

2

( ) (2 2.5, )

( | ) ( )

10.4 2
0.1

P error P x

p x P dx

dx

ω ω

ω ω

∴ = ≤ ≤ =

=

= ×

=

∫

∫

 

            

             

            

So the probability of error via a Bayes
classifier is 0.1
What is the a priori probability of error?

it is 0.5!1 2
1( ) ( ) ,2P Pω ω= =Q  
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Example 2Example 2
2

1
2

1

( )
2

1
1

1( | )
2

x

p x e
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π σ

−
−

=

2
2
2
2

( )
2

2
2
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2

x

p x e
μ
σω

π σ

−
−

=

1 1

2 2

1 2

0 1.5
4 1.5

3 1( ) ( )4 4

where

and P P

μ σ
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ω ω

= =
= =

= =
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Example 2 (Plots)Example 2 (Plots)

2( | )P xω

x→

1( | )p x ω 2( | )p x ω

p(x)

1( | )P xω

2.618

1

x→ x→
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Example 2 (contd.)Example 2 (contd.)
Decision Boundary

2 2
1 2
2 2
1 2

2 2
1 2
2 2
1 2

1 2

1 1 2 2

( ) ( )
2 2

1 2
( ) ( )

2 2

2 2

( | ) ( | )
( | ) ( ) ( | ) ( )

( ) ( )

3 1 1 1
4 42 2

3
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e e

e e
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x
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ω ω ω ω

π σ πσ
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=

=

=
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−

− = −

=      

3939

Example 2 (contd.)Example 2 (contd.)

Error Analysis:

( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

2 1
2 2
2 1

2 1
2.618

2 2 1 1
2.618

( ) ( )2.618
2 2

2.6182 1
2

2.618, 2.618,

| |

1 1 1 3. .
4 42 2

7.4957 10

x x
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−

= < = + > =

= +

= +

= ×

∫ ∫

∫ ∫

  

           

           

           

4040

Example 3Example 3

1( | )p x ω =

1 1 1 3
4 4
1 5 3 5
4 4
0

x x

x x

otherwise
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1 1 4 6
4
1 2 6 8
4
0

x x

x x
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2( | )p x ω =

1 2
31( ) , ( )4 4P Pω ω= =    
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Example 3 (Plots)Example 3 (Plots)

2( | )P xω

x→ x→

1( | )p x ω 2( | )p x ω

p(x)

1( | )P xω
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Example 3 (contd.)Example 3 (contd.)

Decision Boundary:

Notice that the optimal boundary lies between

1 2( | ) ( | )P x P xω ω=

04 5x≤ ≤

1 1 2 2( | ) ( ) ( | ) ( )
1 5 1 1 3( ) ( 1)
4 4 4 4 4

1 5 3 3
16 16 16 4

4.25

p x P p x P

x x

x x

x
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Example 3 (contd.)Example 3 (contd.)

Error Analysis:

( ) ( ) ( ) ( ) ( )
4.25

2 2 1 1
4.25

4.25 5

4 4.25
4.25 52 2

4 4.25

2

| |

1 3 1 5 11
4 4 4 4 4

3 1 5
4 8 4 8 4
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⎛ ⎞ ⎛ ⎞
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