Segmentation using
Bayesian Decision Theory

J. K. Aggarwal
The University of Texas at Austin
Austin, TX 78712

Example

Segmentation Contd.

o When one is considering a sequence of
images, and one is interested in
separating the foreground and the
background, one may use the mean at
the pixel or median of the pixel to get a
good estimate of the intensity at the
given pixel. This process works for
simple cases.

Segmentation

o Segmentation of images is the separation of
pixels into different categories depending upon
their intensities and/or other contextual
information. We will pose this problem as
Background Vs. Foreground

o Segmentation process is fairly simple for black
and white or gray scale images, using a
“threshold” one is able separate the foreground
from the background.

Represent FG & BG by Single Values

Simple thresholding can do the separation
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Mean & Median Images

Segmentation cont.

o Mean o Median

o However, for more robust segmentation,
one may assume that the intensity for the
background and the foreground each is
described by a probability density
function.

o One may use Bayesian Decision Theory
for separating the foreground and
background.

Prior probability

Decision Using Only Priors

o In this B vs. F example, let @wdenote the
state of nature

o, = Background
@, = Foreground

o Prior (a priori) probabilities P(,), P(w,)
Reflects knowledge of what the next pixel
might be before the pixel appears
P(w,) + P(w,) =1, assuming 2 classes

o Decide on the type of the “pixel” without
being allowed to know the intensity
o Decision Rule
Decide @, if P(@)>P(@,)
Decide @, if P(@;) < P(w,)
o This rule decides on the same class for
all pixels!
o But under these conditions, no other
classifier can perform better.
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Density Functions

A Practical Decision Scenario

pxle) P, (xlw)

o Probability density functions, where x
denotes the intensity, / and m indicate
pixel position. In the most general case
one can assume that each pixel has
different probability density.
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o Classify based on some feature, say intensity,
of the pixel samples x

o We will capture the variability of this feature
using a continuous class-conditional probability
distribution p(x| )
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Bayes Rule

Bayes Decision Rule

o Bayes Rule states:
r(x|w)P(w))
p(x)
p(xle,)is the likelihood of x being in class o,
p(a)/) izs the prior probability of class o,

P, |x)=

p(x)=) p(x|o,)P(w;) ensures that P(o,|x) is a
valid pBSterior probability function that sums
to one.
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o Bayes decision rule:
Select @, if P(w, | x) > P(w, | x)
ie. plxla)P(e)> p(x|w)P(w,)
If p(x|@)=p(x|w,)decision is based entirely
on priors
If P(w)=P(w,) decision is based entirely on
likelihoods

Bayes rule combines both to achieve
minimum probability of error
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Levels of Difficulty

About Bayes Rule

o One knows probability density functions
and a priori probabilities.

o One estimates these probabilities from
samples. One may assume normal
distributions or more general forms

o You do not have a way of estimating
these probabilities, you pose it as an
optimization problem or a clustering
problem.
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o Bayes Rule is derived from the joint
distribution

p(a)/,x): P(w] |X)p(x): p(xlw/)P(w/)
p(xl,)P(a)

p(x)
o In words, Bayes rule says

:.P(a)j |x):

. likelihood * prior
posterior = —————
evidence
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Bayes Rule (cont.)

Bayes Rule (cont.)

o Likelihood: p(x|ew;) simply denotes that all other
things being equal, the category w; for which
p(x|o)) is large is more “likely” to be the
category

o Evidence: p(x) is simply a scale factor to ensure
that P(e)|x) is a valid probability function.

o Bayes rule converts the prior and the likelihood
to a posterior probability, which can now be
used to make decisions
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o Note that the product of likelihood and prior
probabilities governs the shape of the posterior

o Decision Rule: o, if P(@, | x) > P(@, | x) else o,
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Error Analysis

Variations of the Bayes Rule

P(w, | x) if we decide o,
O P(error|x) = ) )
P(w, | x) if we decide o,
o Average probability of error is
P(error) = T P(error,x)dx = ? P(error | x) p(x)dx
o If P(error|x) is as small as possible for
every x, the above integral will be
minimized
o Hence using Bayes rule
P(error | x) =min[P(e, | x), P(w, | x)]
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o Bayes decision rule:
Select @, if P(w, | x) > P(w, | x)
ie. plxla)P(e)> p(x|w)P(w,)
If p(x|@)=p(x|w,)decision is based entirely
on priors
If P(w)=P(w,) decision is based entirely on
likelihoods

Bayes rule combines both to achieve
minimum probability of error
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Univariate Density

Univariate Denisty (cont.)

o A Univariate normal density 7(x)~N(u.0%)

1 1 x—uY
P()= o0 527
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o Expected value p=E[x]= 1 ap(x)dx
Points tend to cluster around the mean

2 © 2
o Variance UZEE[(X*/‘) ]:7{0("*/’) p(x)dx
Measure of spread of values

o Entropy H(p(x))=—1 p(x)In p(x)dx
Measure of uncertainty -

Normal has max. entropy of all distributions given
mean and variance
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Multivariate Density

Parameters of the multivariate normal

o d-dimensional normal density p(x) ~ N (n, X)

1 1 [ -1
Px) = gL gl W B )|

O x is a d-component column vector
o u is the d-component mean vector

o X is the d-by-d covariance matrix and |X|
and X! are its determinant and inverse,
respectively
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o Mean

,qu[x]=J.xp(x)dx

Computed component-wise; i.e. x4 = E[x;]
o Covariance Matrix

ZEE[[(X*I‘)(X*/‘)/} [(x=a)(x-n) p(x)ax

o, =E|(x,—u)(x; —y/)]
Always symmetric and positive semidefinite
o, is variance of x;
o, =0 implies that x; and x; are statistically
independent
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present FG & BG by Single Distributions

FG and BG are generated from single 1D normal distributions

We are able to estimate the parameters (u;, o;) from the training
sequences

PIUVIBE) PUVIFG)

0

0
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25

present FG & BG by Single Distributions

Assume the prior probabilities are equal

I(u, v pelongstoFGif  pUu.v)] FGM> pU(u,v,)| BG)P(BG)
. TFU(:’#,’V)T P i)~

8G1 fG

T

——

Multivariate Normal Density (cont.)

o Loci of points of constant density are
hyper-ellipsoids of the form (x-p) £ (x-p)

o r*=(x—pn) 27 (x—-p) is the Mahalanobis
distance (squared) from x to u

o Volume of hyperellipsoid

V=V,
72 1(d12)! deven oo, i
V,= i 0 1),2((12—1)!/0” odd vl or ek

27

The Real Situations

o In stead of the entire background, the values of a
background pixel over time can he modeled hv a
single or a mixture of Gaussians

o Due to the motion of objects, by pixel foreground
model is usually not available

The Real Situations (cont’d)

Given a controlled sequence with only background values,
we can train a Gaussian for each pixel location
Color image:

pI(,v)|BG)= a7z EXP[*%(I(M,.V/) -1 I U wv) - )]

o

@0z,

Grayscale image:

P10, BG) = z;,zexp[’%(wy]

o Without the knowledge of priors and foreground conditional
probability, we can threshold on the

Z-value to perform background subtraction

L 1) -m

o,
v 29

The Real Situations (cont’d)

In the context of color image, the Mahalanobis distance is
defined as:

Dy (v ) =G v) = 1) T (wv)) — 1)
o The Mahalanobis distance implies the probability of the test

pixel value belonging to the background model
ex: llustration of BG subtraction in grayscale case

1, v,)
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Results

Test image

FG image, T, = 4

FG image, Ty, = 100

Example 1

Consider the given class conditional probability
density functions:

p(x| @) =?15[u(x)—u(x—2.5)]

Plx| @) =2 lulx-2) ~u(x-4)]

where u(x) is the unit step function:
u(x)=1, x>0
=0, otherwise
A priori probabilities:
P(wy) = P(w,) =12
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Example 1 (contd.)

o Plots of various probabilities:

oe pxle)

plx|a)

2 4 x>

p(x) = p(x| @) P(@) + p(x| @) P(@,)
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Example 1 (contd.)

Posterior p(x|@)P(w)

ot P(a)i | x) =~ il
Probabilities: p(x)
Py | x) P(w,|x)

2 4 x>
Observe that there will be error in classification
for 2 <x<2.5, if the true class is @,, because
the Bayes classifier will decide @, since

P(w,|x)>P(w,|x) for this region

Example 1 (contd.)

O .. Plerror)=P(2<x<25 0=w)
25

= [ p(x| @) P(@)dx

25
= _2[ 0.4x % dx
=0.1
o So the probability of error via a Bayes
classifier is 0.1
o What is the a priori probability of error?
~ P(w) = P(w,) = }é itis 0.5!

35

Example 2
1 C(mm)?
o x|@)=——e 2
p( | 1) \/ﬁo-l
1 _xmpp)?

20'22

p(x|w,) :ﬁe
2

where =0 o0,=15
=4 o0,=15

and P(a)l):% P(a)z):%
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Example 2 (Plots)
plx| @ plx|e)

N

j 269,

xX—> 2.618 X —>
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Example 2 (contd.)

o Decision Boundary
P(w, | x) = P(w, | x)
pixl@)P(w) _ plx|@,)P(w,)

Example 2 (contd.)

o Error Analysis:

P(error)=P(x<2.618, =)+ P(x>2.618 w=a)
28

- 'fsp(xm)P(wz)dH T plxla)P(e)ds

2618 (=p1) =)’
1

1 o1
= e % i e ¥ i
. N2zxo, 4 2!.18 V2rno, 4
=7.4957x10"
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p(x) p(x)
E 1 eﬁ(xz—:%) 71 1 ei(x;;g)
4 \/ﬁal 4 \/50'2
7(:#;)2 7(:7#;)2
3¢ 2% —, 29
2 2
log, 3- -~ - (=4
4.5 4.5
x=2.618 38
Example 3
1x—1 1<x<3
4 4
p(xlwl): —Ex-%—E 3<x<5
4 4
0 otherwise
Ex—l 4<x<6
4
plxlo)=9_1 o cics
0 otherwise
P@)=Y,, P@)=3, .

Example 3 (Plots)

) P(a, | x) P(w, | x)

4.25 X—> a

Example 3 (contd.)

o Decision Boundary:
P(a, | x) = P(w, | x)
Notice that the optimal boundary lies between
4<x,<5
p(x|@)P(@) = p(x| @,) P(@,)
1 51 /1 3
—x+)==(=x-D—
Co PGy
1 5 3 3
—X+t—=—x——
16 16 16 4
x=4.25 .




Example 3 (contd.)

o Error Analysis:

P(eWor):AJ%Sp(xM)Z)P(a)z)derjf p(xl@)P(ay)dx

4.25

4.25

=2.3438x102




