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search by Chum and colleagues [CPZ08]. Jain et al . devise an algorithm to generate
semi-supervised hash functions that support learned Mahalanobis metrics or kernels
[JKG08], while Kulis and Grauman provide LSH functions amenable to arbitrary
kernel functions [KG09].

Embedding functions offer another useful way to map expensive distance func-
tions into something more manageable computationally. Recent work has considered
how to construct or learn an embedding that will preserve the desired distance func-
tion, typically with the intention of mapping to a very low-dimensional space that is
more easily searchable with known techniques [AASK04, TFW08, SH07, WTF09].
These methods are related to LSH in the sense that both seek small “keys” that
can be used to encode similar inputs, and often these keys exist in Hamming space.
While most work with vector inputs, the technique in [AASK04] accepts generic
distance functions.

In short, all such search and embedding methods offer ways to reduce the
computational cost of finding similar image descriptors within a large database.
The appropriate choice for an application will depend on the similarity metric that
is required for the search, the dimensionality of the data, and the offline resources
for data structure setup or other overhead costs.

5.2 Visual Vocabularies and Bags of Words

In this section we overview the concept of a visual vocabulary—a strategy that draws
inspiration from the text retrieval community and enables efficient indexing for local
image features. We first describe the formation of visual words (Section 5.2.1), and
then describe their utility for indexing (Section 5.2.2) and image representation
(Section 5.2.3).

5.2.1 Creating a Visual Vocabulary

Methods for indexing and efficient retrieval with text documents are mature, and ef-
fective enough to operate with millions or billions of documents at once. Documents
of text contain some distribution of words, and thus can be compactly summarized
by their word counts (known as a bag-of-words). Since the occurrence of a given
word tends to be sparse across different documents, an index that maps words to
the files in which they occur can take a keyword query and immediately produce
relevant content.

What cues, then, can one take from text processing to aid visual search? An
image is a sort of document, and (using the representations introduced in Chapter 3)
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Figure 5.2: A schematic to illustrate visual vocabulary construction and word assign-
ment. (a) A large corpus of representative images are used to populate the feature
space with descriptor instances. The white ellipses denote local feature regions, and
the black dots denote points in some feature space, e.g ., SIFT. (b) Next the sampled
features are clustered in order to quantize the space into a discrete number of visual
words. The visual words are the cluster centers, denoted with the large green circles.
The dotted green lines signify the implied Voronoi cells based on the selected word
centers. (c) Now, given a new image, the nearest visual word is identified for each of
its features. This maps the image from a set of high-dimensional descriptors to a list
of word numbers. (d) A bag-of-visual-words histogram can be used to summarize
the entire image. It counts how many times each of the visual words occurs in the
image.
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it contains a set of local feature descriptors. However, at first glance, the analogy
would stop there: text words are discrete “tokens”, whereas local image descriptors
are high-dimensional, real-valued feature points. How could one obtain discrete
“visual words”?

To do so, we must impose a quantization on the feature space of local image
descriptors. That way, any novel descriptor vector can be coded in terms of the
(discretized) region of feature space to which it belongs. The standard pipeline
to form a so-called “visual vocabulary” consists of (1) collecting a large sample
of features from a representative corpus of images, and (2) quantizing the feature
space according to their statistics. Often simple k-means clustering is used for the
quantization; the size of the vocabulary k is a user-supplied parameter. In that case,
the visual “words” are the k cluster centers. Once the vocabulary is established, the
corpus of sampled features can be discarded. Then a novel image’s features can be
translated into words by determining which visual word they are nearest to in the
feature space (i.e., based on the Euclidean distance between the cluster centers and
the input descriptor). See Figure 5.2 for a diagram of the procedure.

Drawing inspiration from text retrieval methods, Sivic and Zisserman first
proposed quantizing local image descriptors for the sake of rapidly indexing video
frames with an inverted file [SZ03]. They showed that local descriptors extracted at
interest points could be mapped to visual words by computing prototypical descrip-
tors with k-means clustering, and that having these tokens enabled faster retrieval
of frames containing the same words. Csurka and colleagues first proposed using
quantized local descriptors for the purpose of object categorization; an image’s de-
scriptors are mapped to a bag-of-words histogram counting the frequency of each
word, and categories are learned using this vector representation [CBDF04].

Prior to that work, researchers had considered a sort of visual vocabulary
specifically for the texture classification problem. Leung and Malik proposed quan-
tizing the densely sampled outputs of filter banks to form a vocabulary of textons,
which then allowed an image of a material to be summarized with a histogram of
texton occurrences [LM99]. Later extensions showed how to improve invariance
properties and flexibility to viewing conditions of the materials [CD01, VZ02].

What will a visual word capture? The answer depends on several factors,
including what corpus of features are used to build the vocabulary, the number
of words selected, the quantization algorithm used, and the interest point or sam-
pling mechanism chosen for feature extraction. In general, patches assigned to the
same visual word should have similar low-level appearance (see Figure 5.3). Par-
ticularly when the vocabulary is formed in an unsupervised manner, there are no
constraints that the common types of local patterns be correlated with object-level
parts. However, in Chapter 7 we will see some methods that use visual vocabularies
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Figure 5.3: Four examples of visual words. Each group shows instances of patches
that are assigned to the same visual word.KG: images from Sivic 2003

or codebooks to provide candidate parts to a part-based category model.

The discussion above assumes a flat quantization of the feature space, but many
current techniques exploit hierarchical partitions [NS06, GD05b, GD06, MTJ06,
YLD07, BZM07]. Nister and Stewenius proposed the idea of a vocabulary tree, where
one chooses a branching factor and number of levels, and then uses hierarchical k-
means to recursively subdivide the feature space. Vocabulary trees offer a significant
advantage in terms of the computational cost of assigning novel image features to
words—from linear to logarithmic in the size of the vocabulary. This in turn makes
it practical to use much larger vocabularies (e.g ., on the order of one million words).
Experimental results suggest that these more specific words (smaller quantized bins)
are particularly useful for matching specific instances of objects [NS06, PCI+07,
PCI+08]. Since quantization entails a hard-partitioning of the feature space, it can
also be useful in practice to use multiple randomized hierarchical partitions, and/or
to perform a soft assignment in which a feature results in multiple weighted entries in
nearby bins. Recent work considers how to hierarchically aggregate the lowest level
tokens from the visual vocabulary into higher level parts, objects, and eventually
scenes [STFW05, AT06, PZC09].

An important concern in creating the visual vocabulary is the choice of data
used to construct it. Generally researchers report that the most accurate results are
obtained when using the same data source to create the vocabulary as is going to be
used for the classification or retrieval task. This can be especially noticeable when
the application is for specific-level recognition rather than generic categorization.
For example, to index the frames from a particular movie, the vocabulary made
from a sample of those frames would be most accurate; using a second movie to
form the vocabulary should still produce meaningful results, though likely weaker
accuracy. When training a recognition system for a particular set of categories, one
would typically sample descriptors from training examples covering all categories
to try and ensure good coverage. That said, with a large enough pool of features
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Figure 5.4: Depending on the level of recognition and data, sparse features detected
with a scale invariant interest operator or dense multi-scale features extracted every-
where in the image may be more effective. To match specific instances (like the two
images of the UT Tower in (a)), the sparse distinctive points are likely preferable.
However, to adequately represent a generic category (like the images of bicycles in
(b) and (c)), more coverage may be needed. Note how the interest operator yields a
nice set of repeatable detections in (a), whereas the variability between the bicycle
images leads to a less consistent set of detections in (b). A dense multi-scale ex-
traction as in (c) will cost more time and memory, but guarantees more “hits” on
the object regions the images have in common. The Harris-Hessian-Laplace detec-
tor [MS04b] was used to generate the interest points shown in these images.
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taken from diverse images (admittedly, a vague criterion), it does appear workable
to treat the vocabulary as “universal” for any future word assignments. Further-
more, researchers have developed methods to inject supervision into the vocabu-
lary [WCM05, PDCB06, MTJ06], and even to integrate the classifier construction
and vocabulary formation processes [YJSJ08]. In this way, one can essentially learn
an application-specific vocabulary.

The choice of feature detector or interest operator will also have notable impact
on the types of words generated, and the similarity measured between the resulting
word distributions in two images. Factors to consider are (1) the invariance proper-
ties required, (2) the type of images to be described, and (3) the computational cost
allowable. Figure 5.4 visualizes this design choice. Using an interest operator (e.g .,
a DoG detector) yields a sparse set of points that is both compact and repeatable
due to the detector’s automatic scale selection. For specific-level recognition (e.g .,
identifying a particular object or landmark building), these points can also provide
an adequately distinct description. A common rule of thumb is to use multiple
complementary detectors; that is, to combine the outputs from a corner-favoring
interest operator with those from a blob-favoring interest operator.

On the other hand, for category-level tasks, research suggests that a regular,
dense sampling of descriptors can provide a better representation [NJT06, LSP06],
essentially because it means the object has more regular coverage: there is nothing
that makes the “interest” points according to an invariant detector correspond to
the semantically interesting parts of an object. When using a dense sampling, it is
common to extract patches at a regular grid in the image, and at multiple scales.
A compromise on complexity and descriptiveness is to sample randomly from all
possible dense multi-scale features in the image. See Figure 5.4. Overall, dense
features are now more commonly used for category recognition, whereas interest
operators are more commonly used to match instances of objects or locations.

5.2.2 Inverted File Indexing

Visual vocabularies offer a simple but effective way to index images efficiently with
an inverted file. An inverted file index is just like an index in a book, where the
keywords are mapped to the page numbers where those words are used. In the
visual word case, we have a table that points from the word number to the indices
of the database images in which that word occurs. For example, in the cartoon
illustration in Figure 5.5, the database is processed and the table is populated with
image indices in part (a); in part (b), the words from the new image are used to
index into that table, thereby directly retrieving the database images that share its
distinctive words.



68 CHAPTER 5. INDEXING AND VISUAL VOCABULARIES

w23

w7
Image #1

Word # Image #

w7
Image #1

1 3

2

w7

w62

2

…

7 1, 2m
a
g
e
s

Image #2
8 3

…

a
b
a
s
e
 i
m

w91

w76

9D
a
ta

w76 w8

w1

Image #3

10

…

91 2 1

… … …

(a) All database images are loaded into the index
mapping words to image numbers.

Word # Image #

1 3

22

…

7 1, 2

w7

8 3

…

9
New query image

10

…

91 2 

… …

(b) A new query image is mapped to indices
of database images that share a word.

Figure 5.5: Main idea of an inverted file index for images represented by visual
words.

Retrieval via the inverted file is faster than searching every image, assuming
that not all images contain every word. In practice, an image’s distribution of words
is indeed sparse. Since the index maintains no information about the relative spatial
layout of the words per image, typically a spatial verification step is performed on
the images retrieved for a given query (e.g ., see [PCI+07]).

5.2.3 Image Representation with a Bag of Visual Words

As briefly mentioned above, the visual vocabulary also enables a compact summa-
rization of all an image’s words. The common text description of a “bag-of-words”
can be mapped over to the visual domain: the image’s empirical distribution of
words is captured with a histogram counting how many times each word in the
visual vocabulary occurs within it (see Figure 5.2 (d)).

What is convenient about this representation is that it translates a (usually
very large) set of high-dimensional local descriptors into a single sparse vector of
fixed dimensionality across all images. This in turn allows one to use many machine
learning algorithms that by default assume the input space is vectorial—whether for
supervised classification, feature selection, or unsupervised image clustering. Csurka
et al . [CBDF04] first showed this connection for recognition by using the bag-of-
words descriptors for discriminative categorization. Since then, many supervised
methods exploit the bag-of-words histogram as a simple but effective representation.
In fact, many of the most accurate results in recent object recognition challenges
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employ this representation in some form [EVGW+, Cal04].

Most recently, a number of methods for unsupervised topic modeling have
been built upon bag-of-words features [SRE+05, RES+06, FFFPZ05, QMO+05],
once again taking inspiration from methods originally used in document/text pro-
cessing. For example, Russell and colleagues explore how probabilistic Latent Se-
mantic Analysis and Latent Dirichlet Allocation can be used to discover the visual
themes among segments extracted from unlabeled images. While there is no guaran-
tee of discovering patterns at the object level, their results demonstrate that object
categories do tend to surface among the repeated elements.

The lack of geometry in the bag-of-words representation (BoW) can potentially
be either an advantage or a disadvantage. On the one hand, by encoding only the
occurrence of the appearance of the local patches, not their relative geometry, we
get significant flexibility to viewpoint and pose changes. On the other hand, the
geometry between features can itself be an important discriminating factor, which a
BoW will miss. Assuming none of the patches in an image overlap, one would get the
same description from a BoW no matter where in the image the patches occurred.
In practice, features are often extracted such that there is overlap, which at least
provides some implicit geometric dependencies among the descriptors. Furthermore,
by incorporating a post-processing spatial verification step, or by expanding the
purely local words into neighborhoods and configurations of words, one can achieve
an intermediate representation of the relative geometry. We discuss this in more
detail in Chapter 6, Section 6.2.

When the BoW is extracted from the whole image, features arising from the
true foreground and those from the background are mixed together, which can be
problematic, as the background features “pollute” the object’s real appearance. To
mitigate this aspect, one can form a single bag from each of an image’s segmented
regions (possibly from multiple segmentations), or in the case of sliding window
classification, within a candidate bounding box sub-window of the image.

Finally, in spite of clear benefits that visual words afford as tools for recogni-
tion, the optimal formation of a visual vocabulary remains unclear. The analogies
drawn between textual and visual content only go so far: real words are discrete
and human-defined constructs, but the visual world is continuous and yields complex
natural images. Real sentences have a one-dimensional structure, while images are
2D projections of the 3D world. Thus, more research is needed to better understand
the choices made when constructing vocabularies for local features.

In the next chapter we will discuss an alternative view for recognition with
local features, where instead of summarizing an image’s distribution, one seeks a
correspondence or matching between the candidate parts.




