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Chapter 7

Part-Based Category Models

The previous chapters introduced object categorization approaches that were based
on unordered sets of features (as in the case of bag-of-visual-words methods) or that
incorporate only weak spatial constraints (as e.g. in the case of the pyramid match
kernel). In this chapter, we now want to examine the question how to incorporate
more detailed spatial relations into the recognition procedure and how the resulting
object representation can be efficiently learned from training data.

For this, we draw parallels to the specific object recognition techniques pre-
sented in Chapter @l Back then, we were concerned with establishing exact cor-
respondences between the test image and the model view in order to verify if the
matched features occurred in a consistent geometric configuration. As the exact
appearance of the model object was known, the extracted features could be very
specific, and accurate transformation models could be estimated.

When moving from specific object recognition to object categorization, how-
ever, the task becomes more difficult. Not only may the object appearance change
due to intra-category variability, but the spatial layout of category objects may also
undergo a certain variation. Thus, we can no longer assume the existence of ex-
act correspondences. As shown in Figure [Z.I], we can however still often find local
object fragments or parts with similar appearances that occur in a similar spatial
configuration. The basic idea pursued in this chapter is therefore to learn object
models based on such parts and their spatial relations.
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Figure 7.1: While the global object appearance may undergo significant variation
inside a category, the appearance and spatial relationship of local parts can often
still give important cues. This provides a strong motivation for using part-based
models (BL: Figure from Rob Fergus).

7.1 Object Categorization with Part-Based Mod-
els

Many part-based models have been proposed in the literature. The idea to represent
objects as an assembly of parts and flexible spatial relations reaches back to Fischler
& Elschlager’s work in 1973 [FET73]. While this early work started from a set of hand-
defined part templates, most recent approaches try to also learn the part appearance
from training data. This implies that the learning algorithm itself should be able to
select which local object regions to represent and it should be able to group similar
local appearances into a common part representation. An optimal solution to the
selection problem would imply a search over a huge search space. The development of
local invariant features however provides an efficient alternative which has proven to
work well in practice. Consequently, all part-based models discussed in the following
are based on local features.

Once the parts have been defined, the next question is how to represent their
spatial relationship. This choice reflects the mutual independence assumptions we
want to make about relative part locations, and it directly affects the number of
parameters needed to fully specify the resulting model, as well as the complexity of
performing inference using this model.

Various spatial models have been proposed over the years. Figure gives
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Figure 7.2: Overview over different part-based models investigated in the literature.
In this chapter, we focus on two models from this list: the Constellation Model and

the Star Model (BL: Figure adapted from Carneiro et al. [CL0G)).

an overview over the most popular designs. The simplest model is a Bag of Visual
Words, as described in Chapter Bl and shown in Fig. [[2[(a). This model does not
encode any geometric relations and is listed just for completeness. At the other
extreme is a fully connected model, which expresses pairwise relations between any
pair of parts. This type of model has become known as a Constellation Model
and has been used in [FZP03, [FEFFP03]. A downside of the full connectivity is
that such a model requires an exponentially growing number of parameters as the
number of parts increases, which severely restricts its applicability for complex visual
categories.

A compromise is to combine the parts in a Star Model (Fig. [[2(c)), where
each part is only connected to a central reference part and is independent of all

other part locations given an estimate for this reference part. Such a representation
has been used in the Implicit Shape Model [LLS04, [LLS0S], as well as in several
other approaches [CEFHOS, [FPZ05, [OPZ06a]. The advantage of this model is its
computational efficiency: exact inference can be performed in O(N?) (compared to
O(NF) for a k-part Constellation model), and more efficient approximations can
be devised based on the ideas of the Generalized Hough Transform [LS03b, [LT.S04]
[LLS08] or the Generalized Distance Transform [FHO5DH]. The idea of the Star Model
can be readily generalized to a Tree Model (Fig.[L.2(d)), where each part’s location
is only dependent on the location of its parent. This type of model is used in the
Pictorial Structures framework by Felzenszwalb & Huttenlocher [FHO5b] and has
led to efficient algorithms for human pose estimation.
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Figure 7.3: Visualization of the different components of the Constellation Model
(see text for details) (BL: Figure from Fergus et al. [FZP03]).

Finally, the above ideas can be generalized in various other directions. The
k-fan Model |[CFHOS] (Fig. [[2(e)) spans a continuum between the fully-connected
Constellation Model and the singly-connected Star Model. It consists of a fully-
connected set of k reference parts and a larger set of secondary parts that are only
connected to the reference parts. Consequently, its computational complexity is
in O(N**1). A similar idea is employed in the Hierarchical Model (Fig. [L2(f)) by
Bouchard & Triggs [BT05], which contains a (star-shaped) layer of object parts, each
of which is densely connected to a set of bottom-level local feature classes. Finally,
we want to mention the Sparse Flexible Model (Fig. [[2(g)) proposed by Carneiro
& Lowe [CLO6], where the geometry of each local part depends on the geometry of
its k nearest neighbors, allowing for flexible configurations and deformable objects.

In the following, we will focus on two models from this list which have been
widely used in the literature: the Constellation Model and the star-shaped Implicit
Shape Model. We will introduce the basic algorithms behind those approaches and
discuss their relative strengths and weaknesses.
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7.2 The Constellation Model

The Constellation Model by and was introduced for
unsupervised learning of object categories. It represents objects by estimating a
joint appearance and shape distribution of their parts. Thus, object parts can be
characterized either by a distinct appearance or by a distinct location on the object.
As a result, the model is very flexible and can even be applied to objects that are
only characterized by their texture.

The Constellation model can best be introduced by first considering the recog-
nition task. Given a learned object class model with P parts and parameters 6,
the task is to decide whether a new test image contains an instance of the learned
object class or not. For this, N local features are extracted with locations X, scales
S, and appearances A. The Constellation model now searches for an assignment h
of features to parts in order to make a Bayesian decision R [FZP03]:

(7.1) = p(Object|X, 8, A) ~  p(X,S, Al6)p(Object)
) p(No object|X, S, A) p(X, S, A|6,,)p(No object) ’

where the likelihood factorizes as follows

p(X,S,Al0) = ) p(X,S, A hlf)

heH
(7.2) = Y p(A]X,S,h,0) p(X|S, h,0) p(S|h, 6) p(h|d) .
her Appe;;(mce Sf:(;pe Rel. Scale  Other

That is, we represent the likelihood as a product of separate terms for appearance,
shape, relative scale, and other remaining influences. Figure shows a visualiza-
tion of those different components. In each case, a separate model is learned for the
object class and for the background.

Briefly summarized, the first term represents each part’s appearance indepen-
dently by a Gaussian density in a 15-dimensional appearance space obtained by PCA
dimensionality reduction from 11 x 11 image patches. This is compared against a
single Gaussian density representing the background appearance distribution. The
shape term models the joint Gaussian density of the part locations within a hy-
pothesis in a scale-invariant space. The corresponding background clutter model
assumes features to be spread uniformly over the image. The scale model is again
given by a Gaussian density for each part relative to a common reference frame, also
compared against a uniform background distribution. Finally, the last term takes
into account both the number of features detected in the image (modeled using a
Poisson distribution) and a probability table for all possible occlusion patterns if
only a subset of the object parts could be observed.
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The classification score is computed by marginalizing over all |H| C O(NT)
possible assignments of features to parts. This marginalization makes it possible
to represent an entire category by a relatively small number of parts. It effectively
removes the need to make hard assignments at an early stage — if two features provide
an equally good support for a certain part, both will contribute substantially to the
total classification result. At the same time, the exponential complexity of the
marginalization constitutes a major restriction, since it limits the approach to a
relatively small number of parts.

7.2.1 Learning Procedure

The Constellation Model has been designed with the goal of learning with weak
supervision. That is, neither the part assignments, nor even object bounding boxes
are assumed to be known — only the image labels (target category or background)
are provided. Given such a training dataset, the goal of the learning procedure is
to find the maximum likelihood estimate for the model parameters 9ML, 1.e. the
parameter setting that maximizes the likelihood for the observed data X, S, A from
all training images.

This is achieved using the expectation mazimization (EM) algorithm. Starting
from a random initialization, this algorithm converges to a (locally optimal) solu-
tion by alternating between two steps. In the E-step, it computes an expectation
for the part assignments given the current value of §. The M-step then updates
f in order to maximize the likelihood of the current assignment. Since the E-step
involves evaluating the likelihood for each of the N¥ possible feature-part assign-
ments, efficient search methods are needed to keep the approach computationally
feasible. Still, the authors report training times of 24-36 hours for a single-category
model trained on 400 class images in their original paper [FZP03]. This is partially
also due to the large number of parameters required to specify the fully-connected
model (according to [FZP03], a 5-part model needs 243 parameters and a 6-part
model already requires 329 parameters), which in turn impose a requirement on the
minimum training set size. Those constraints together restrict the original approach
to a small set of only 5-6 parts.

7.2.2 Example Results

Figure [T 4] shows the learned representations and recognition results on two different
object categories. The first category, motorbikes, has a clearly defined structure.
Consequently, the learned model contains well-defined appearances and compact
spatial locations for all object parts (as visible from the small covariance ellipses
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Figure 7.4: Results of the Constellation Model on two object categories: motorbikes
and spotted cats. The top row shows the learned representations for spatial relations
and appearance; the bottom row contains recognition results on images from the
test set, visualizing the best-scoring part assignment (BL: Figure from Fergus et al.

FZP03)).

in the upper left plot of the figure). It can also be seen that the parts are consis-
tently found in corresponding locations on the test images, showing that the learned
representation really makes sense. In contrast, the second category, “spotted cats”
contains significant variability from different body poses and viewing angles. As a
result, the Constellation Model focuses on the repeatable texture as most distinc-
tive feature and keeps only very loose spatial relations. This ability to adapt to
the requirements of different categories, automatically weighting the contribution of
appearance versus spatial features as needed for the task at hand, is an important
property of the Constellation Model.

7.2.3 Discussion and Extensions

The Constellation model was historically one of the first successful part-based models
for object categorization. It therefore had a big impact and helped shape the field
for the next years. In addition, it initiated a research competition for the best spatial
representation and introduced one of the first realistic benchmark datasets for this
task. Many of the above-mentioned restrictions were addressed in follow-up work,
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e.g. in the later papers by [FFEP03, [FPZ05]. As research progressed, it became
clear that the full connectivity offered by the original Constellation Model was both

not required and could not be taken advantage of given the usual training set sizes
that were investigated. Instead, star-shaped and tree-shaped spatial models were
deemed more promising, as they require a far smaller number of parameters and
are more efficient to evaluate. Consequently, Fergus et al. themselves proposed an
updated version of their model incorporating such a star topology [FPZ05].

7.3 The Implicit Shape Model (ISM)

The fully-connected shape model described in the previous section is a very powerful
representation, but suffers from a high computational complexity. in this section,
we now examine a recognition approach that builds upon a much simpler spatial
representation, namely a Star Model in which each part’s location only depends
on a central reference part. Given this reference position, each part is treated
independently of the others. Thus, the object shape is only defined implicitly by
the information which parts agree on the same reference point. This motivates the
name of the approach: Implicit Shape Model (ISM) [LS03b [LT.S04], [LL.S0S].

Together with the change in the spatial model, the ISM approach also takes
on a different philosophical interpretation of what object properties are represented.
The Constellation model aims to represent a relatively small number of (less than
10) semantically meaningful parts, with the tacit assumption that each object of
the target category should contain those parts. The parts may undergo appearance
variations and may occur in varying spatial configurations, but a majority of them
should always be present and if any part cannot be found, it should be explicitly
flagged as “occluded”. In contrast, the ISM does not try to model semantically
meaningful parts, but instead represents objects as a collection of a large number
(potentially 1000s) of prototypical features that should ideally provide a dense cover
of the object area. Each such prototypical feature has a clearly defined, compact
appearance and a spatial probability distribution for the locations in which it can
occur relative to the object center. In each test image, only a small fraction of the
learned features will typically occur—e.g., different features will be activated for a
dark and a brightly colored car—but their consistent configuration can still provide
strong evidence for an object’s presence.

7.3.1 Learning Procedure

In contrast to the Constellation Model, the ISM requires labeled training examples.
In the least case, the labels should include a bounding box for each training object,
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Figure 7.5: Visualization of the ISM training procedure (Figure from [LLS08]).

so that the training algorithm knows the object location and scale. However, in
order to take full advantage of the ISM’s capabilities, the training examples should
also include a reference segmentation, e.g. given by a polygonal object boundary as
available in the LabelMe database [RTMFO8| or by a pixel-wise figure-ground map.
If such a training segmentation is available, the ISM can then infer a top-down
segmentation for each test image as a result of the recognition procedure. This
requirement of a training segmentation may sound like a big restriction. However,
it only has to be provided for relatively small training sets (50-150 examples per
visual category are usually sufficient), and the recognition results are significantly
improved as a consequence.

The full ISM training procedure is visualized in Figure The first step is
to build up a visual vocabulary (the appearance codebook) from scale-invariant local
features that overlap with the training objects, using any of the methods presented
in Chapter [, Section £.2.1] Next, the ISM learns a spatial occurrence distribution
for each visual word. For this, we perform a second pass over all training images and
match the extracted features to the stored vocabulary using a soft-matching scheme
(i.e., activating all visual words within a certain distance threshold). For each visual
word, the ISM stores a list of all positions and scales at which this feature could be
matched, relative to the object center. This results in a non-parametric probability
density representation for the feature position given the object center. The key
idea behind the following recognition procedure is then that this distribution can be
inverted, providing a probability distribution for the object center location given an
observation of the corresponding feature.

In addition to the non-parametric distribution, the ISM also stores a refer-
ence figure-ground mask for each occurrence entry, as extracted from the segmented
training image at the feature position. This mask is then later on used for inferring
a top-down segmentation.
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Figure 7.6: Visualization of the ISM recognition procedure (Figure from [LLS08]).

7.3.2 Recognition Procedure

The ISM recognition procedure follows the idea of the Generalized Hough Transform
(c.f. Section 4.3.2)), but extends this technique to model the uncertainty inherent in
recognizing an object category [LLS08|. An overview is shown in Figure [[[6l Given
a new test image, the ISM again extracts local features and matches them to the
visual vocabulary using soft-matching. Each activated visual word then casts votes
for possible positions of the object center according to its learned spatial distribution,
whereupon consistent hypotheses are searched as local maxima in the voting space.

In order to model the uncertainty of the object category, the Hough voting step
is formulated in a probabilistic manner. The contribution of a feature f observed at
location ¢ to the object category o, at position x is expressed by a marginalization
over all matching visual words C;:

(7.3) p(on, x| f,0) Zp 0n, X[Ci,0)  p(Cilf)
N——

i Hough vote  Matching prob.

The first term corresponds to the stored occurrence distribution for visual word
C;, which is weighted by the second term, the probability that feature f indeed
corresponds to this visual word. In practice, this second term is usually set to |c_1*\’
where |C*| corresponds to the number of matching visual words. Thus, each image
feature casts an entire distribution of weighted votes.

As another difference to the standard GHT, the votes are stored in a continuous
3D voting space for the object position x = (x,y,s). Maxima in this space are
efficiently found using Mean-Shift Mode Estimation [CM02] with a scale-adaptive
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Figure 7.7: Visualization of the basic idea employed in the ISM. (left) During train-
ing, we learn the spatial occurrence distribution of each visual word relative to the
object center. (middle) For recognition, we use those learned occurrence distribu-
tions in order to cast probabilistic votes for the object center in an extension of the
Generalized Hough Transform. (right) Once a maximum in the voting space has
been found, we can backproject the contributing votes in order to get the hypothe-
sis’s support in the image.

kernel K:

T4 Plonx) = 35 plowxs s ) K (222
Vi) bx)

kg

where b is the kernel bandwidth and Vj its volume. Both are adapted according to
the scale coordinate x, such that the kernel radius always corresponds to a fixed
fraction of the hypothesized object size. This way, the recognition procedure is kept

scale invariant [LS04], [LLS0§].

The search procedure can be interpreted as kernel density estimation for the
position of the object center. It should be noted, though, that the ISM voting pro-
cedure does not conform to a strict probabilistic model, since the vote accumulation
implies a summation of probabilities instead of a product combination, as would be
required. This issue is more closely examined in the recent work by Lehmann et
al. [LLV09], where a solution is proposed motivated by a duality to sliding-window
detection approaches.

Once a hypothesis has been selected, all features that contributed to it are
backprojected to the image, thereby visualizing the hypothesis’s support. This back-
projected information is later on used to infer a top-down segmentation. The main
ideas behind the ISM recognition procedure are again summarized in Figure [[.7

7.3.3 Top-Down Segmentation

The backprojected support already provides a rough indication where the object is
in the test image. As the sampled features still contain background structure, this is
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Figure 7.8: (left) Visualization of the ISM top-down segmentation procedure. (right)
Example detection and segmentation results on motorbikes (Figures from [LLS08]).

however not a precise segmentation yet. The ISM therefore performs an additional
step in order to infer a pixel-wise figure-ground segmentation from the recognition
result. This step uses the stored local figure-ground masks that were obtained when
learning from segmented training images.

In detail, we are interested in the probability that a pixel p is figure or ground
given the object hypothesis, i.e. p(p = figure|o,, x). This probability can be obtained
by marginalizing over all features containing this pixel and then again marginaliz-
ing over all vote contributions from those features to the selected object hypothe-

sis [LS03b), [LLSOS]:

p(p= figure|o,,x) =

P fk7 gk
(7.5) > Y pp=1fig-lon,x,Ci, tx) plon, X| fi, ) —pio X;
(frLK)2P o ore £, mas oe‘;ei "
- Vk all visual Stfor (iazlgvotc - et o

all COntI‘lbut‘l U8 words matched
features containing to feature fj

pixel p

In this formulation, p(p = fig.|o,, X, C;, {x) denotes the stored figure-ground masks
for the votes contributed by feature (fi, ). The priors p(fx,fx) and p(o,,x) are
assumed to be uniform. This means that for every pixel, we effectively build a
weighted average over all local segmentation masks stemming from features con-
taining that pixel, where the weights correspond to the features’ contribution to the
object hypothesis. The final object segmentation is then obtained by computing the
likelihood ratio of the figure and ground probability maps for every pixel, as shown
in Figure [Z.8

As shown by Thomas et al. [TELT07, [TFLT09], this top-down segmentation
procedure can be further generalized to also infer other kinds of meta-data annota-
tions. This includes discrete properties such as part labels, continuous values such
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Figure 7.9: As shown by Thomas et al. [TFLT07, ITFLT09], the ISM top-down
segmentation procedure can be generalized to also infer other kinds of meta-data,
such as part labels, depth maps, or surface orientations.

as depth maps, as well as vector-valued data such as surface orientations. Some
example results are shown in Figure [.9]

7.3.4 Hypothesis Verification

Finally, the extracted object hypotheses are verified in a model selection procedure,
which selects the set of hypotheses that together best explain the image content.
Briefly stated, this procedure expresses the score of a hypothesis as the sum over its
per-pixel p(figure) probability map. If two hypotheses overlap, then they compete
for pixels, as each pixel can only be explained by a single hypothesis. Thus, each
pair of hypotheses incurs an interaction cost that is subtracted from their combined
scores. A new hypothesis is therefore only selected if it can draw sufficient support
from an otherwise as-yet-unexplained image region. This step is important to obtain
robust detection performance and significantly improves the recognition results. For

details, we refer to [LLSO0g].

Some example detection results with this verification procedure are shown
in Figure The ISM and its extensions were also successfully applied to a
variety of other object categories, in particular for detecting pedestrians [LSS05]
and cars [LLS08, [LCCVQT7]. The recognition performance however hinges on the
availability of a sufficient number of input features to cover the target objects. For
this reason, later experiments were often based on a combination [LMS06] of several
different interest region detectors [LCCV07]. For example, the chair detection results
shown in Figure [[.I0(right) were obtained through a combination of Harris-Laplace,
Hessian-Laplace, and DoG interest regions.
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Figure 7.10: Example recognition and segmentation results of the ISM.

7.3.5 Discussion and Extensions

The ISM provides a successful example for a part-based recognition approach based
on a Star Model. The success of this simple representation may first seem surprising,
since it imposes no further constraints on relative part locations other than that
they should be consistent with a common object center. Clearly, this is quite a
weak constraint, but its good performance in practice can be explained by the large
number of local features that contribute to an object hypothesis. If those features
overlap, they are no longer truly independent, and consistent responses are enforced
this way. This property is also used by the ISM top-down segmentation stage, which
further reinforces consistency between overlapping local segmentations. Still, it may
happen that additional, spurious object parts are associated to a hypothesis simply
because they are also consistent with the same object center. This may particularly
become a problem for articulated objects, as shown in Figure [[L.TIl Experience
however shows that such effects can usually be removed by a further hypothesis
verification stage enforcing more global constraints (as done e.g. in [LSS05]).

Since its inception, a number of extensions have been proposed for the basic
ISM algorithm. Those include adaptations for rotation-invariant voting [MLS06],

multi-cue combination [LMS06, [SLMS05], multi-category recognition [MLS06|, LCCVQT],

multi-viewpoint detection [SLMS06], [TFLF06], discriminative verification [FLCS05,
(GL09, [MMQ9], and articulated pose estimation [ARS08]. We refer to the extensive

literature for details.

7.4 Concluding Remarks

In this chapter, we have discussed two popular part-based models for object catego-
rization. Several other models should also be mentioned, but could not be expanded
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Figure 7.11: An important restriction of the star topology model used in the ISM
is that no higher-level spatial relations between features are encoded. Each local
feature that is consistent with the same object center may contribute to a hypothesis.
For articulated objects, this may lead to additional body parts being associated to
an object hypothesis (Figure from [LSS05]).

upon due to space constraints. Of particular interest here is the Pictorial Struc-
tures approach by Felzenszwalb & Huttenlocher [FHO5b], which implements a Tree
Model. This model has become popular for articulated body pose analysis (e.g. in

[REZ07, [EMZ08, [ARS0S]).

As mentioned before, part-based models have the advantage that they can
deal with object shapes that are not well-represented by a bounding box with fixed
aspect ratio. They have therefore often be applied for recognizing deformable object
categories. In contrast, it has been observed that, given sufficient training data, the
discriminative sliding-window approaches from Chapter 2 (e.g. [DT05D, [FMROS])
often perform better for recognizing mostly rectangular object categories such as
faces or front/back views of pedestrians. The best choice of representation therefore
again depends on the application.





