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When is scene identification just texture recognition?
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Abstract

Subjects were asked to identify scenes after very brief exposures (<70 ms). Their performance was always above chance and

improved with exposure duration, confirming that subjects can get the gist of a scene with one fixation. We propose that a simple

texture analysis of the image can provide a useful cue towards rapid scene identification. Our model learns texture features across

scene categories and then uses this knowledge to identify new scenes. The texture analysis leads to similar identifications and

confusions as subjects with limited processing time. We conclude that early scene identification can be explained with a simple

texture recognition model.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Background

Our visual system can gather an incredible amount of

information about an image in a glance. When a rapid

sequence of photographs is presented (133–300 ms per
image), subjects are surprising accurate at detecting a

target image, whether the subject was precued with the

target picture or just a verbal description of the objects

in the scene (Potter, 1975). Singly presented pictures

preceded and followed by a noise mask can be accu-

rately detected in a later recognition task, even when the

presentation was less than 120 ms in duration (Potter,

1976). When a natural image is shown for only 20 ms,
subjects can detect whether or not an animal is present.

Event-related potentials suggest that this decision is

reached within 150 ms (Thorpe, Fize, & Marlot, 1996).

From these experiments, it is clear that we are quick

to detect objects in the image but can we also detect or

identify the place or scene depicted? Fortunately, we
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have names for scenes, such as ‘‘beach’’, ‘‘street’’ and

‘‘forest’’ (Tversky & Hemenway, 1983). It has been

shown that subjects are, in fact, able to identify scene

categories from a masked presentation of a photograph

shown for only 45–135 ms (Schyns & Oliva, 1994). This

identification can be as quick and accurate as the iden-

tification of a single object (Biederman, 1998). Rapid
scene identification might be useful for creating a con-

text in which objects can be located and identified (see

Henderson & Hollingworth, 1999 for a review).

In general, subjects are very good at getting the ‘‘gist’’

of a scene, i.e. the conceptual category and layout (the

schema) within a single fixation. Although the accurate

timing of scene identification has not yet been deter-

mined, researchers believe it occurs within 100 ms. What
sort of representation or information are we using to

identify scenes so quickly? One possibility is that scene

processing includes activation of a spatial layout, or

schema of the scene. This is supported by phenomenon

called boundary extension. Subjects presented with a

scene will later remember having seen a greater extent of

it than was depicted in the photograph (Intraub &

Richardson, 1989). While the first demonstrations used
a presentation time of 15 s, later experiments demon-

strated that the phenomenon could still occur with 250

ms presentations (Intraub, Gottesman, Willey, & Zuk,
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1996). There is also evidence for specialized brain areas

that process places: the parahippocampal place area

(PPA) is thought to process information about the lay-

out or geometry of the scene (Epstein & Kanwisher,

1998).

What cues or information in the image allows us to

quickly activate the scene schema? Friedman (1979)

proposed that the visual system might first recognize a
‘‘diagnostic object’’ that in turn triggers recognition of

the scene. For example, a toaster would be diagnostic of

a kitchen scene. Others argue that scenes may have

distinctive holistic properties. For example, Biederman

(1972) found that subjects have more difficulty recog-

nizing and locating objects in a jumbled scene than in a

coherent one, even when the objects remain intact.

Loftus, Nelson, and Kallman (1983) studied the avail-
ability of holistic versus specific feature cues in picture

recognition experiments. For brief presentations, sub-

jects performed better when their response depended on

the holistic cue. The arguments for a holistic property

are consistent with the fact that we do not need to scan

an image with our eyes or apply attention to particular

objects in order to get the gist of the scene and most

research supports this theory (Loftus et al., 1983;
Metzger & Antes, 1983; Schyns & Oliva, 1994).
1.2. Texture as a holistic cue

By definition, a holistic cue is one that is processed

over the entire visual field and does not require attention

to analyze local features. Color is an obvious and strong

cue for scene identification (Oliva & Schyns, 2000).

Texture can be processed quickly and in parallel over

the visual field (Beck, 1972; Bergen & Julesz, 1983),

making it a candidate as well. Subjects can rapidly

identify scenes without color, so we omit this dimension
in our study and focus on the role of texture as a holistic

cue.

An image region with one texture seems to ‘‘pop-out’’

or segregate easily from a background region with a

perceptually different texture. What are the relevant

features within a texture that allow this rapid discrimi-

nation? Julesz (1981, 1986) proposed that the first order

statistics of ‘‘textons’’ determine the strength of texture
discrimination. Just as phonemes are the elements that

govern speech perception, textons are the elements that

govern our perception of texture. Julesz described them

to be locally conspicuous features such as blobs, termi-

nators and line crossings. These features were described

for the micropattern stimuli used in early texture dis-

crimination experiments; however, these patterns are a

poor representation of the real-world textures our visual
system deals with. Filter-based models can represent the

relevant local features that compose a texture and are

easily applied to more realistic images (Bergen & Adel-
son, 1988; Fogel & Sagi, 1989; Landy & Bergen, 1991;

Malik & Perona, 1990).

1.3. Summary of our approach

We investigate to what extent the texture features in a

scene can be used for identification. First, subjects are
asked to identify scenes with limited viewing times.

Next, we reformulate the idea of textons to be the

characteristic output of filters applied to a set of real

images. Our model then identifies scenes by matching

their texton histograms against learned examples. Fi-

nally, we compare our model performance against sub-

ject performance and conclude that a simple texture

recognition model can mostly account for early human
scene identification.
2. Experimental methods

2.1. Subjects

A total of 48 undergraduates were paid to participate

in the 1-h experiment. Each participant had normal or
corrected-to-normal vision and gave written consent in

accordance with the University of California at Berke-

ley’s Committee for the Protection of Human Subjects.

2.2. Stimuli

Images of scenes were taken from the Corel Image

Database and various Internet sites. Our image database

consists of 1000 images of scenes in 10 basic-level cate-

gories: beach, mountain, forest, city, farm, street,

bathroom, bedroom, kitchen and livingroom. These

scenes can also be placed in three superordinate-level

categories: natural/outdoor, man-made/outdoor and

man-made/indoor (Fig. 1). We randomly selected 250 of
these images as the training set from which the model

learned prototypical textures. The remaining 750 images

were used as the test set to measure the ability of our

subjects and our model to identify scenes.

2.3. Procedure

The experiment was run in a dimly lit room to re-

duce visual distractions. Subjects fixated a marker that

blinked before stimulus onset to reduce spatial and

temporal uncertainty. The target was a grayscale image

displayed briefly (<70 ms) depending on the test con-

dition. Subjects never saw the same image twice. Fol-

lowing the target, a jumbled scene mask immediately

appeared for 20 ms to interrupt perceptual process-
ing and to restrict target availability to the expo-

sure duration. Each rectangular region in the mask

was sampled from a different scene category. Next,



Fig. 1. Pictured here are some example images from the ten scene categories used in this paper. Each row is labeled with its basic-level (left) and

superordinate-level (right) category. The dataset is available at http://www.cs.berkeley.edu/projects/vision/shape/.
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a uniform gray field was displayed for 500 ms, fol-

lowed by two word choices for 2.5 s. One word choice

corresponded to the grayscale image presented and
the other was chosen randomly from the remaining

nine scene labels. Subjects responded in this two-

alternative forced choice task by selecting the word on

the left or right that best described the target image

(Fig. 2).
2.4. Design

A preliminary study in which subjects viewed the
scenes for 150 ms was conducted to validate the

experimental setup. Performance was near perfect,

confirming that the task is reasonable given the label-

ing of the dataset, choice of mask and viewing dis-

tance. With this setup we can study the effects of target



Fig. 2. Subjects were shown grayscale scenes for 37, 50, 62 or 69 ms followed by a jumbled scene mask and two word choices. The 2AFC task was to

select the word that best described the target.
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exposure duration on scene identification. Four con-

ditions were tested in which the target was displayed

for 37, 50, 62 or 69 ms. There were 11, 15, 8 and 14
participants for the respective conditions. On a given

trial, the target image was presented followed by

its corresponding category label and one of the other

nine category labels. To explore all 10 categories,

an experimental block consisted of 90 trials. Most

subjects completed two experimental blocks during the

session.

2.5. Apparatus

Stimuli were presented on a PC running Windows

2000 and the BitmapTools presentation software for

Matlab (developed by Payam Saisan, under the super-
vision of Martin Banks). The display was set at

800 · 600 pixels and 256 colors with a refresh rate of 160

Hz. Subjects did not use a chinrest, but were instead

instructed to sit with their back against the chair to

maintain a viewing distance of approximately 2.5 m.

Responses were collected on a BTC Wireless Multi-

media Keyboard 5113RF. The images were displayed on

a mid-gray background and presented foveally. Abso-
lute image dimensions varied, but were scaled to a height

of 380 pixels (7.6 in. displayed) to subtend a visual angle

of approximately 5.3�.
3. Texture model

Several researchers have constructed algorithms that
extract low-level features from images in order to clas-

sify them into two categories, for example indoor ver-

sus outdoor (Szummer & Picard, 1998), city/suburb

versus other (Gorkani & Picard, 1994) and city/suburb

versus landscape (Vailaya, Jain, & Zhang, 1998). They

achieve reasonable classification performance by weight-

ing particular discriminating features, for example, cities

will have more vertical edge energy than flat landscapes
(see also Oliva & Torralba, 2001).

The classification schemes mentioned above apply

high-level or top-down knowledge in the form of a class-

specific template or feature weighting. Because subjects

are quick to identify scenes in a glance without prior

cues, we avoid learning class-specific features and in-

stead examine the ability of early vision mechanisms to

delineate scene categories in a purely bottom-up fashion.
Our model learns what local texture features occur

across all scene categories by first filtering the set of 250

training images with V1-like filters, then remembering

their prototypical response distributions. The number of

occurrences of each feature within a particular image is

stored as a histogram, creating a holistic texture

descriptor for that image. When identifying a new

image, its histogram is matched against stored examples.



Fig. 3. Our model uses a filterbank of first and second derivatives of a

Gaussian to estimate texture features at each pixel in the image. The 36

filters consist of two phases (even and odd), three scales (spaced by

half-octaves), and six orientations (equally spaced from 0 to p). Each
filter has 3:1 elongation and is L1 normalized for scale invariance.
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Another distinction from past work is that a texture

analysis deliberately ignores global spatial relationships

across the scene.

3.1. Learning universal textons

3.1.1. Training set

The training set contains 250 images (25 examples for

each of the 10 scene classes) that were not used in the

testing phase. The model learns universal textons from

this training set.

3.1.2. ‘‘V1’’ filters

As mentioned earlier, Julesz’ formulation of a texton

was suited to micropatterns but not to generic images.

Filter models can also describe human texture discrim-

ination and are better suited to our purpose. The for-

mulation of these filters follows descriptions of simple

cell receptive fields in V1 of the primate visual cortex
(DeValois & DeValois, 1988). In particular, these

receptive fields can be characterized as Gabor functions,

difference of Gaussians and difference of offset Gaus-

sians. For our model, we use first and second derivatives

of Gaussians to create quadrature pairs,

foddðx; yÞ ¼ G0
r1
ðyÞGr2ðxÞ

fevenðx; yÞ ¼ G00
r1
ðyÞGr2ðxÞ

where GrðxÞ represents a Gaussian with standard devi-

ation r. The ratio r2:r1 is a measure of the elongation of

the filter. The filters are built at three scales for spatial
frequency selectivity and rotated for orientation selec-

tivity (Fig. 3). The three filter scales, taking viewing

distance of the target stimulus into account, are equal to

3.6, 2.5 and 1.8 c/deg. This range of spatial frequencies is

shifted lower than our peak sensitivities under photopic

conditions, as might be expected given the brief (high

temporal frequency) nature of our stimuli and the lower

light levels used during the experiment (DeValois &
DeValois, 1988).

3.1.3. Clustering filter response distributions

As a first step in our texture analysis, the image is

convolved with the filter bank to produce a vector of

filter responses I � f ðx0; y0Þ, which characterizes the im-
age patch centered at x0, y0. Because texture has spatially
repeating properties, similar vectors of responses will

reoccur as texture features reoccur in the image. To

learn what the most prevalent features are, we filter the

entire training set of images and cluster the resulting

response vectors to find 100 prototypical responses. In

particular, we utilized the K-means clustering algorithm

available in the Netlab toolbox for Matlab. The proto-
typical responses found correspond to common texture

features in the training images. We call these prototypes

‘‘universal textons’’ to stress that the features are
learned across multiple examples of the scene categories,

rather than within a single image (Malik, Belongie,

Leung, & Shi, 2001; Malik, Belongie, Shi, & Leung,

1999). We can visualize a universal texton by multiply-

ing its filter response vector by the pseudoinverse of the

filterbank (Jones & Malik, 1992). Our universal textons

are illustrated in Fig. 4(a). They correspond to edges and

bars with varying curvature and contrast.
3.1.4. Histograms of activity in texton channels

Once we have a vocabulary of universal textons, we

can analyze any image into texton channels and examine

the resulting histogram. Each pixel in an image is as-

signed to a texton channel based on the vector of filter
responses it induces. The value of the kth histogram bin

for an image is then found by counting how many pixels

are in texton channel k. The histogram represents texton

frequencies in the image:

hiðkÞ ¼
X

j2image

I ½T ðjÞ ¼ k�

where I ½�� is the indicator function and T ðjÞ returns the
texton assigned to pixel j (Malik et al., 1999, 2001). In

essence, the histogram is a holistic representation of
texture in the image that ignores gross spatial relation-

ships (Fig. 4(b)).
3.2. Identifying new scenes

3.2.1. Test stimuli

The 750 images not used for learning universal tex-

tons are used here to test the ability of our texture model

to identify scenes.



Fig. 4. (a) The 100 texture features found across the training images (sorted by increasing norm). These ‘‘universal textons’’ correspond to edges and

bars of varying curvature and contrast. (b) Each pixel in an image is assigned to a texton channel based on its corresponding vector of filter responses.

The total activity across texton channels for a given image is represented as a histogram. (c) Test images are identified by matching their texton

histograms against stored examples. The v2 similarity measure indicates our test image is more similar to a bedroom than a beach scene in this case.
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3.2.2. Comparing histograms

For each new image, we can develop a description of

its texture by creating a universal texton histogram. To

find the closest match, this histogram is compared to

stored histograms for the training images using the v2

similarity measure

v2ðhi; hjÞ ¼
1

2

XK

k¼1

½hiðkÞ � hjðkÞ�2

hiðkÞ þ hjðkÞ
;

where hi and hj are the two histograms and K is the total
number of bins (universal textons). If v2 is small, the two
images are similar in their texture content (Fig. 4(b) and
(c)). The model is tested with the same 2AFC task as our

subjects, and the target scene is assigned the label of its

closest match.
4. Data analysis

Subjects were not allowed to see the same image more
than once to prevent recognition and learning effects on

the data, therefore we do not have data for one subject

across the time conditions. We are also interested in how



Fig. 5. Subject accuracy in the 2AFC scene discrimination task im-

proves with increased presentation time. The percent correct is plotted

with its 95% confidence intervals for 48 subjects (11, 15, 8 and 14

subjects at 37, 50, 62 and 69 ms). Chance performance is 50% correct.
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the model compares to typical subject performance. For

these reasons, we collapse data across subjects within a

single time condition. We measure statistics from the

consolidated data using bootstrapping techniques (Efron

& Tibshirani, 1993). The datasets for each time condition

are resampled with replacement at least 1000 times.

From each resampling, the statistic of interest is calcu-

lated. The central limit effect causes the resulting distri-
bution over the statistic to tend toward normality as the

number of samples increases. The mean and standard

deviation of this distribution provide the best estimate of

the statistic and the standard error of the estimate. The

95% confidence intervals are also taken from this distri-

bution and used to determine statistical significance.

Bootstrapping techniques assume that the observed

data is representative of the underlying population. This
is a valid assumption given that we collapse data across

48 subjects and trials were fully randomized. When we

break the analysis down to examine specific error types,

the number of samples available for bootstrapping is

drastically reduced. For the error analysis, we discard

the 62 ms time condition. This condition had the fewest

number of subjects and is somewhat redundant with the

69 ms time condition. It also simplifies our presentation
of the confusion analysis.
5. Results and discussion

5.1. 2AFC scene identification

Subjects and the model performed well above chance

on the 2AFC task for all time conditions. Performance
is similar for the model and the subject at 37 ms, but the

subjects outperform the model overall at longer dura-

tions (Fig. 5). With 69 ms, subjects are performing

above 90% correct, confirming that the gist of a scene

can be processed within one fixation. The model per-

formance could differ at the four time conditions be-

cause it is presented with whatever images the subjects

saw for that condition, however, performance stayed
nearly constant at 76% correct.

Subjects made comments during the experiments that

they saw ‘‘the kitchen’’ or ‘‘the forest’’ when referring to

the stimuli, indicating that they often perceived only one

instance of each scene, when in fact, there were many

examples of each scene class presented to them during

the experiment. This is consistent with previous experi-

ments that suggest we get the gist of a scene quickly, but
it takes longer to retain the specific details of those

scenes in memory (Loftus et al., 1983; Potter, 1976).

5.2. Correct identification of basic-level categories

The proportion of correct responses for the model is

most similar to human responses at 37 ms across the 10
basic-level scene categories (Fig. 6). Identical perfor-

mance occurs along the diagonal line in this figure.

Significant correlation occurs between the model and

humans at both 37 and 50 ms. At 37 ms, the model is

doing a better job on beach and kitchen scenes, but

humans are far superior on mountain scenes. Subjects
reported that mountains just seemed to ‘‘pop out’’ at

them. In this case, subjects seem to be able to make use

of large-scale shape information (the triangle of the

mountain against the sky). As time progresses to 50 ms,

the performance is still correlated, but humans are doing

a better job on categorizing 9 of the 10 basic-level scene

categories. With longer exposures, subjects are clearly

outperforming the texture model.

5.3. Identification errors

With the briefest exposures, we might expect human

errors to be noisy and unpredictable, given the difficulty
of the scene identification task. As exposure durations

are increased, however, we would expect these errors to

become more systematic. Can the pattern of these errors

be explained by our texture model?

Both humans and the model can identify a scene as a

member of its superordinate category before its basic-

level category is identified. When we group error rates at

the superordinate-level, we see stronger correlation at 50
ms for both beach and mountain scenes (Fig. 7). Sig-

nificant positive correlation for basic-level identification

does not occur until 69 ms. Correlations at one category



Fig. 6. Comparison of model and human performance in correctly classifying scenes at the basic-level. Identical performance occurs along the

diagonal. Correlation coefficients are noted in the lower right corner of each plot. Performance of the model is significantly correlated with human

performance at 37 and 50 ms (bold values).
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level do not necessarily require correlation at the other,

but they are indicative of how the errors cluster to-

gether.

Both humans and the model can distinguish between
scenes that have distinctive orientation energy profiles.

For example, subjects and the model perform similarly

on indoor/man-made scenes which have energy at all

orientations, and beach and mountain scenes which

have energy confined to more specific orientations.

Scenes with visually similar textures are confused by

both humans and the model. When error rates are low

(69 ms), cities are heavily confused with streets and
farms are confused with beaches. Clearly cities and

streets have buildings and other man-made structures. If

you remove the few man-made structures from a farm

scene, they would indeed look much like a beach scene

with a distinct horizon line and mostly flat ground.

While the successes of the model are certainly inter-

esting, the failures are also informative. Humans seem to

be making an outdoor versus indoor discrimination very
early during scene processing. For example, forest and

street scenes have a lot of vertical orientation energy and

our model gets them confused with indoor as well as

outdoor man-made scenes, as would be expected. Our

subjects, however, rarely confuse these scenes with in-
door man-made scenes, resulting in poor or even sig-

nificantly negative correlations between humans and the

model (Fig. 7). This special ability of our subjects might

again be related to the spatial arrangement of regions or
textures in the scene. Outdoor scenes will tend to have a

horizon line dividing the untextured sky from the tex-

tured ground. Clearly, spatial relationships should be

captured in a complete model for early scene identifi-

cation. Several approaches have been described in the

object recognition literature (e.g. Belongie, Malik, &

Puzicha, 2002; Burl & Perona, 1996) and could be easily

adapted to scene identification.
6. Summary

Scene identification is achieved quite rapidly by the

human visual system and may be useful in creating

context for object localization and identification during

real-world tasks. Previous data and this current study

demonstrate that subjects can process the gist of a scene

within a single fixation. Comparison of our model with
human performance demonstrates that texture provides

a strong cue for scene identification at both the super-

ordinate and basic category levels during early scene



Fig. 7. Comparison of model and human errors when classifying scenes at the basic-level, broken down by scene category. Data from the 62 ms

condition has been omitted for simplicity (see Section 4). The superordinate category of each label is indicated by its color. Red¼man-made/indoor;

Green¼man-made/outdoor; Blue¼ natural/outdoor. Correlation estimates are in the upper left-hand corner for error analysis at the superordinate-

level (left) and the basic-level (right). Significant values are in boldface type. Identical error rates fall along the diagonal line. When the subjects are

more confused by a scene category, it falls above the line. When our model is more confused by a scene category, it falls below the line.
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processing. Failures to describe human performance

seem to be due to lack of knowledge of spatial relations.

In addition to texture, subjects may have access to

coarse segmentation or shape cues in the image. Texture
alone was able to account for correct categorization and

error patterns on 8 out of 10 scenes categories. From

this we conclude that a simple texture recognition model

mostly explains early scene identification.



Fig. 7 (continued)
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