

Mosaics review Robust fitting

Kristen Grauman UT-Austin Thursday, Oct 8

Today

- Review mosaic construction
- Robust fitting with RANSAC
- Midterm questions

Mosaics with image reprojection

Applicable:

Very distant (~planar) scene

How to stitch together a panorama (a.k.a. mosaic)?

- Compute transformation between second image and first (homography)
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)

Source: Steve Seitz

Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection

called Homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$

$$\mathbf{p}$$

$$\mathbf{H}$$

Source: Alyosha Efros

Homography

To apply a given homography H

- Compute **p**' = **Hp** (regular matrix multiply)
- Convert **p**' from homogeneous to image coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$

$$\mathbf{p}' \qquad \mathbf{H} \qquad \mathbf{p}$$

Homography

Given pairs of corresponding points in the images, can solve for the parameters of the homography matrix ${\bf H}.$

Panoramas: main steps

- 1. Collect correspondences (manually for now)
- 2. Solve for homography matrix H
 - Least squares solution
- 3. Warp content from one image frame to the other to combine: say im1 into im2 reference frame

4. Overlay im2 content onto the warped im1 content.

Panoramas: main steps

- 1. Collect correspondences (manually for now)
- 2. Solve for homography matrix H
 - Least squares solution
- 3. Warp content from one image frame to the other to combine: say im1 into im2 reference frame
 - Determine bounds of the new combined image:
 - Where will the corners of im1 fall in im2's coordinate frame?
 - We will attempt to lookup colors for any of these positions we can get from im1.
- 4. Overlay im2 content onto the warped im1 content.

Panoramas: main steps

- 1. Collect correspondences (manually for now)
- 2. Solve for homography matrix H
 - Least squares solution
- 3. Warp content from one image frame to the other to combine: say im1 into im2 reference frame
 - Determine bounds of the new combined image:
 - Where will the corners of im1 fall in im2's coordinate frame?
 - We will attempt to lookup colors for any of these positions we can get from im1.
 - Inverse warp:
 - Compute coordinates in im1's reference frame (via homography) for all points in that range.
 - Lookup all colors for all these positions from im1 (interp2)
- 4. Overlay im2 content onto the warped im1 content.

Panoramas: main steps

- 1. Collect correspondences (manually for now)
- 2. Solve for homography matrix H
 - Least squares solution
- 3. Warp content from one image frame to the other to combine: say im1 into im2 reference frame
 - Determine bounds of the new combined image:
 - Where will the corners of im1 fall in im2's coordinate frame?
 - We will attempt to lookup colors for any of these positions we can get from im1.
 - Inverse warp:
 - Compute coordinates in im1's reference frame (via homography) for all points in that range.
 - Lookup all colors for all these positions from im1 (interp2)
- 4. Overlay im2 content onto the warped im1 content.
 - Careful about new bounds of the output image

HP "Frames" commercials

- http://www.youtube.com/watch?v=UirmvN
 ktkBc
- http://www.youtube.com/watch?v=2RPI5v PEoQk
- http://www.youtube.com/watch?v=lde77E4 PY4Q

Summary: alignment & warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Perform image warping (forward, inverse)
- **Fitting transformations**: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Mosaics: uses homography and image warping to merge views taken from same center of projection.

Boundary extension

Wide-Angle Memories of Close-Up Scenes, Helene Intraub and Michael Richardson, Journal of Experimental Psychology: Learning, Memory, and Cognition, 1989, Vol. 15, No. 2, 179-187

Creating and Exploring a Large Photorealistic Virtual Space

Josef Sivic, Biliana Kaneva, Antonio Torralba, Shai Avidan and William T. Freeman, Internet Vision Workshop, CVPR 2008. http://www.youtube.com/watch?v=E0rboU10rPo

Creating and Exploring a Large Photorealistic Virtual Space

Synthesized view from new camera

Induced camera motion

Today

- Review mosaic construction
- Robust fitting with RANSAC
- Midterm questions

Outliers

- **Outliers** can hurt the quality of our parameter estimates, e.g.,
 - an erroneous pair of matching points from two images
 - an edge point that is noise, or doesn't belong to the line we are fitting.

Example: least squares line fitting

 Assuming all the points that belong to a particular line are known

Outliers affect least squares fit

RANSAC

- RANdom Sample Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC

- RANSAC loop:
- 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find inliers to this transformation
- If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

RANSAC example: Translation

Source: Rick Szeliski

RANSAC example: Translation

RANSAC example: Translation

RANSAC for estimating homography

RANSAC loop:

- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute *inliers* where $SSD(p_i', \mathbf{H}p_i) \le \varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute least-squares H estimate on all of the inliers

Slide credit: Steve Seitz

Robust feature-based alignment

Source: L. Lazebnik

Robust feature-based alignment

Extract features

Source: L. Lazebnik

Robust feature-based alignment

- Extract features
- Compute *putative matches*

Source: L. Lazebnik

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)

Source: L. Lazebnik

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik

Today

- Review mosaic construction
- Robust fitting with RANSAC
- Midterm questions