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Local invariant features
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Some image stitching results
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Last time

• Stereo matching, 
ft t i tsoft constraints

• Camera calibration: 
estimate projection 
matrix given world and 
image point 
correspondences

Today

• Weak calibration 

L l i i t f t• Local invariant features
– Detection of interest points

• Harris corner detection
• Scale invariant blob detection: LoG

– Description of local patches
• SIFT : Histograms of oriented gradients• SIFT : Histograms of oriented gradients
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Weak calibration

• Want to estimate world geometry without 
requiring calibrated cameras
– Archival videos
– Photos from multiple unrelated users
– Dynamic camera system

• Main idea: 
– Estimate epipolar geometry from a (redundant) set of p p g y ( )

point correspondences between two uncalibrated
cameras

From before: Projection matrix

• This can be rewritten as a 
matrix product using 
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From before: Projection matrix

• This can be rewritten as a 
matrix product using 
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Uncalibrated case

cintim pMp =For a given 
camera:

leftimint,leftleftc ,
1

, pMp −=
So, for two cameras (left and right):

rightimint,rightrightc ,
1

, pMp −=

Internal calibration 
matrices, one per 
camera
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0,, =Τ
leftcrightc Epp From before, the essential

matrix E.
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“Fundamental matrix”F

Fundamental matrix

• Relates pixel coordinates in the two views
• More general form than essential matrix: weMore general form than essential matrix: we 

remove need to know intrinsic parameters

• If we estimate fundamental matrix from 
correspondences in pixel coordinates, can 

t t i l t ith t i t i ireconstruct epipolar geometry without intrinsic or 
extrinsic parameters.
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Stereo pipeline with weak calibration
• So, where to start with uncalibrated cameras?

– Need to find fundamental matrix F and the correspondences 
(pairs of points (u’,v’) ↔ (u,v)).

• 1) Find interest points in image (more on this later today)
• 2) Compute correspondences
• 3) Compute epipolar geometry
• 4) Refine

Example from Andrew Zisserman

1) Find interest points

Stereo pipeline with weak calibration
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2) Match points within proximity to get putative matches

Stereo pipeline with weak calibration

3) Compute epipolar geometry -- robustly with RANSAC

Stereo pipeline with weak calibration

Select random sample ofSelect random sample of 
putative correspondences

Compute F using them
- determines epipolar constraint

Evaluate amount of support
- inliers within threshold distance of 

epipolar line

Choose F with most support 
(inliers)
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Using correlation 
search to get 
putative matches: 
noisy, but enough 
to compute Fto compute F 
using RANSAC

Pruned 
matches: thosematches: those 
consistent with 
epipolar
geometry

What features to match?

• How to find interest points?
H t d ib l l i hb h d• How to describe local neighborhoods more 
robustly than with a list of pixel intensities?
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Today

• Weak calibration 

L l i i t f t• Local invariant features
– Detection of interest points

• Harris corner detection
• Scale invariant blob detection: LoG

– Description of local patches
• SIFT : Histograms of oriented gradients• SIFT : Histograms of oriented gradients

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

],,[ )1()1(
11 dxx K=x

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )2()2(
12 dxx K=x
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Local features: desired properties

• Repeatability
– The same feature can be found in several images– The same feature can be found in several images 

despite geometric and photometric transformations 
• Saliency

– Each feature has a distinctive description
• Compactness and efficiency

– Many fewer features than image pixels
• Locality

– A feature occupies a relatively small area of the 
image; robust to clutter and occlusion

Goal: interest operator repeatability

• We want to detect (at least some of) the 
same points in both images.

• Yet we have to be able to run the detection 
procedure independently per image.

No chance to find true matches!
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Goal: descriptor distinctiveness

• We want to be able to reliably determine 
which point goes with which.

?
• Must provide some invariance to geometric 

and photometric differences between the two 
views.

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views



10/27/2009

17

• What points would you choose?

Corners as distinctive interest points

We should easily recognize the point by 
looking through a small window

Shifting a window in any direction should give 
a large change in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov
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Corners as distinctive interest points

⎦⎣ yyyx

2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point).
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First, consider an axis-aligned corner:

What does this matrix reveal?
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⎤⎡⎤⎡ 2 0λIII

First, consider an axis-aligned corner:

What does this matrix reveal?
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This means dominant gradient directions align with 
x or y axis

Look for locations where both λ’s are large.

If either λ is close to 0, then this is not corner-like.
What if we have a corner that is not aligned with the 
image axes? 

What does this matrix reveal?

Since M is symmetric, we have TXXM ⎥
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The eigenvalues of M reveal the amount of 
intensity change in the two principal orthogonal 
gradient directions in the window.
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Corner response function

“flat” region
λ1 and λ2 are 

ll

“edge”:
λ1 >> λ2

“corner”:
λ1 and λ2 are large,
λ λ small;λ2 >> λ1
λ1 ~ λ2;

2

2
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Harris corner detector

1) Compute M matrix for each image window to

2
2121 )(),( λλαλλ +−=yxR

1) Compute M matrix for each image window to 
get their R scores.

2) Find points whose surrounding window gave 
large corner response (R> threshold)

3) Take the points of local maxima of R, i.e., 
perform non-maximum suppressionperform non maximum suppression
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Example of Harris application

Corner response (R) map
Compute corner response R at every pixel.
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Detected corner-like points
Threshold R values, take local maxima.

Applied independently to two images
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Properties of the Harris corner detector
Rotation invariant? 
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Scale invariant?

Example
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Example

Properties of the Harris corner detector
Rotation invariant? Yes

Scale invariant? No

All points will be 
classified as edges

Corner !
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Adjusting the window scale parameter

Window scale = 10 Window scale = 15 Window scale = 30

Harris detector fires (finds local maxima) in different set ofHarris detector fires (finds local maxima) in different set of 
points depending on the scale of the window we sum over.

Scale invariant interest points
How can we independently select interest points in 
each image, such that the detections are repeatable 
across different scales?
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Automatic scale selection
Intuition: 
• Find scale that gives local maxima of some function 

f in both position and scale.

f

region size

Image 1
f

region size

Image 2

s1 s2

What can be the “signature” function f?

Laplacian-of-Gaussian = “blob” detector 2
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At a given point in the image:
We define the characteristic scale as the scale 

that produces peak of Laplacian response

characteristic scale

Slide credit: Lana Lazebnik
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σ5

Scale-space blob detection
Interest points are local maxima in both position 

and scale.

)()( σσ yyxx LL + σ3

σ4

scale

σ1

σ2

⇒ List of
(x, y, σ)

Squared filter 
response maps
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Scale-space blob detector: Example

T. Lindeberg.  Feature detection with automatic scale selection.  IJCV 1998.

Scale-space blob detector: Example

Image credit: Lana Lazebnik
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We can approximate the Laplacian with a 
difference of Gaussians; more efficient to 
implement.

Technical detail

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian)

(Difference of Gaussians)

Today

• Weak calibration 

L l i i t f t• Local invariant features
– Detection of interest points

• Harris corner detection
• Scale invariant blob detection: LoG

– Description of local patches
• SIFT : Histograms of oriented gradients• SIFT : Histograms of oriented gradients
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Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

],,[ )1()1(
11 dxx K=x

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )2()2(
12 dxx K=x

Geometric transformations

e.g. scale, 
translation, 
rotation



10/27/2009

34

Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial

Raw patches as local descriptors

The simplest way to describe the 
neighborhood around an interestneighborhood around an interest 
point is to write down the list of 
intensities to form a feature vector.

But this is very sensitive to even 
small shifts, rotations.
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SIFT descriptor
[Lowe 2004] 

• Use histograms to bin pixels within sub-patches 
according to their orientation.

0 2π

Why subpatches?
Why does SIFT 
have some 
illumination 
invariance?

Making descriptor rotation invariant

CSE 576: Computer Vision

Image from Matthew Brown

• Rotate patch according to its dominant gradient 
orientation

• This puts the patches into a canonical orientation.
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• Extraordinarily robust matching technique
• Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

SIFT descriptor
[Lowe 2004] 

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time
• Lots of code available

• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Steve Seitz

Example

NASA Mars Rover images



10/27/2009

37

Example

NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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Matching local features

Matching local features

?

Image 1 Image 2

To generate candidate matches, find patches that have 
the most similar appearance (e.g., lowest SSD)
Simplest approach: compare them all, take the closest (or 
closest k, or within a thresholded distance)

Image 1 Image 2
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Matching local features

Image 1 Image 2

In stereo case, may constrain by proximity if we make 
assumptions on max disparities.

Image 1 Image 2

Ambiguous matches

Image 1 Image 2

? ? ? ?

At what SSD value do we have a good match?
To add robustness to matching, can consider ratio : 
distance to best match  / distance to second best match
If high, first match looks good.
If low, could be ambiguous match.

Image 1 Image 2
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Applications of local 
invariant features

• Wide baseline stereo
Motion tracking• Motion tracking

• Panoramas
• Mobile robot navigation
• 3D reconstruction
• Recognition
• …

Automatic mosaicing

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]

Recognition of specific objects, scenes

Schmid and Mohr 1997 Sivic and Zisserman, 2003

Rothganger et al. 2003 Lowe 2002
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Summary

• Interest point detection
– Harris corner detector
– Laplacian of Gaussian, automatic scale selection

• Invariant descriptors
– Rotation according to dominant gradient direction
– Histograms for robustness to small shifts and 

translations (SIFT descriptor)

Next
• Recognition & image retrieval
• Thursday:

– Bag of words models and inverted file indexing for images


