Sliding windows and face detection

Tuesday, Nov 10

Kristen Grauman
UT-Austin

Last time

• Modeling categories with local features and spatial information:
 – Histograms, configurations of visual words to capture global or local layout in the bag-of-words framework
 • Pyramid match, semi-local features
Pyramid match

\[Y \in \mathbb{R}^d \]

- Make a pyramid of bag-of-words histograms.
- Provides some loose (global) spatial layout information

Histogram intersection counts number of possible matches at a given partitioning.

\[I(H_X, H_Y) = \sum_j \min(H_X(j), H_Y(j)) \]

\[= 3 \]

Spatial pyramid match

[LaZebnik, Schmid & Ponce, CVPR 2006]
Last time

• Modeling categories with local features and spatial information:
 – Histograms, configurations of visual words to capture global or local layout in the bag-of-words framework
 • Pyramid match, semi-local features
 – Part-based models to encode category’s part appearance together with 2d layout,
 – Allow detection within cluttered image
 • “implicit shape model”, Generalized Hough for detection
 • “constellation model”: exhaustive search for best fit of features to parts

Implicit shape models

• Visual vocabulary is used to index votes for object position [a visual word = “part”]

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004
Implicit shape models

- Visual vocabulary is used to index votes for object position [a visual word = “part”]

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Shape representation in part-based models

“Star” shape model

Fully connected constellation model

- e.g. Implicit shape model
- Parts mutually independent
- Recognition complexity: $O(NP)$
- Method: General Hough Transform

- e.g. Constellation Model
- Parts fully connected
- Recognition complexity: $O(N^P)$
- Method: Exhaustive search

N image features, P parts in the model

Slide credit: Rob Fergus
Coarse genres of recognition approaches

- Alignment: hypothesize and test
 - Pose clustering with object instances
 - Indexing invariant features + verification
- Local features: as parts or words
 - Part-based models
 - Bags of words models
- Global appearance: “texture templates”
 - With or without a sliding window

Today

- Detection as classification
 - Supervised classification
 - Skin color detection example
 - Sliding window detection
 - Face detection example
Supervised classification

• Given a collection of labeled examples, come up with a function that will predict the labels of new examples.

 - “four”
 - “nine”

 Training examples Novel input

• How good is some function we come up with to do the classification?
• Depends on
 – Mistakes made
 – Cost associated with the mistakes

Supervised classification

• Given a collection of labeled examples, come up with a function that will predict the labels of new examples.

• Consider the two-class (binary) decision problem
 – $L(4 \rightarrow 9)$: Loss of classifying a 4 as a 9
 – $L(9 \rightarrow 4)$: Loss of classifying a 9 as a 4

• **Risk** of a classifier s is expected loss:

$$R(s) = \Pr(4 \rightarrow 9 \mid using \ s)L(4 \rightarrow 9) + \Pr(9 \rightarrow 4 \mid using \ s)L(9 \rightarrow 4)$$

• We want to choose a classifier so as to minimize this total risk
Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss.

If we choose class “four” at boundary, expected loss is:

\[P(\text{class is } 9 \mid x) \cdot L(9 \rightarrow 4) + P(\text{class is } 4 \mid x) \cdot L(4 \rightarrow 4) \]

If we choose class “nine” at boundary, expected loss is:

\[P(\text{class is } 4 \mid x) \cdot L(4 \rightarrow 9) \]

Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss.

So, best decision boundary is at point \(x \) where

\[P(\text{class is } 9 \mid x) \cdot L(9 \rightarrow 4) = P(\text{class is } 4 \mid x) \cdot L(4 \rightarrow 9) \]

To classify a new point, choose class with lowest expected loss; i.e., choose “four” if

\[P(4 \mid x) \cdot L(4 \rightarrow 9) > P(9 \mid x) \cdot L(9 \rightarrow 4) \]
Supervised classification

Optimal classifier will minimize total risk.

At decision boundary, either choice of label yields same expected loss.

So, best decision boundary is at point x where

$$P(\text{class is 9 | x}) L(9 \rightarrow 4) = P(\text{class is 4 | x}) L(4 \rightarrow 9)$$

To classify a new point, choose class with lowest expected loss; i.e., choose “four” if

$$P(4 | x) L(4 \rightarrow 9) > P(9 | x) L(9 \rightarrow 4)$$

How to evaluate these probabilities?

Probability

Basic probability

- X is a random variable
- $P(X)$ is the probability that X achieves a certain value

$$P(X)$$

called a PDF

- probability distribution/density function

- $0 \leq P(X) \leq 1$

- $\int_{-\infty}^{\infty} P(X) dX = 1$ or $\sum P(X) = 1$

continuous X

discrete X

- Conditional probability: $P(X | Y)$
 - probability of X given that we already know Y

Source: Steve Seitz
Example: learning skin colors

- We can represent a class-conditional density using a histogram (a “non-parametric” distribution)

Now we get a new image, and want to label each pixel as skin or non-skin.

What’s the probability we care about to do skin detection?
Bayes rule

\[P(skin \mid x) = \frac{P(x \mid skin)P(skin)}{P(x)} \]

\[P(skin \mid x) \propto P(x \mid skin)P(skin) \]

Where does the prior come from?

Why use a prior?

Example: classifying skin pixels

Now for every pixel in a new image, we can estimate probability that it is generated by skin.

Classify pixels based on these probabilities

- if \(p(skin \mid x) > \theta \), classify as skin
- if \(p(skin \mid x) < \theta \), classify as not skin
Example: classifying skin pixels

Figure 6: A video image and its flesh probability image

Figure 7: Orientation of the flesh probability distribution marked on the source video image

Gary Bradski, 1998

Example: classifying skin pixels

Figure 12: CAMSHIFT-based face tracker used to play Quake 2 hands-free by inserting control variables into the mouse queue

Figure 13: CAMSHIFT-based face tracker used to over a 3D graphic’s model of Hawaii

Using skin color-based face detection and pose estimation as a video-based interface

Gary Bradski, 1998
Supervised classification

• Want to minimize the expected misclassification
• Two general strategies
 – Use the training data to build representative probability model; separately model class-conditional densities and priors (generative)
 – Directly construct a good decision boundary, model the posterior (discriminative)

Today

• Detection as classification
 – Supervised classification
 • Skin color detection example
 – Sliding window detection
 • Face detection example
Detection via classification: Main idea

Basic component: a binary classifier

If object may be in a cluttered scene, slide a window around looking for it.

(Essentially, our skin detector was doing this, with a window that was one pixel big.)
Detection via classification: Main idea

Fleshing out this pipeline a bit more, we need to:
1. Obtain training data
2. Define features
3. Define classifier

• Consider all subwindows in an image
 ▶ Sample at multiple scales and positions (and orientations)

• Make a decision per window:
 ▶ “Does this contain object category X or not?”
Feature extraction: global appearance

Simple holistic descriptions of image content
- grayscale / color histogram
- vector of pixel intensities

- Pixel-based representations sensitive to small shifts
- Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation
Gradient-based representations

- Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination
Classifier construction

• How to compute a decision for each subwindow?

Discriminative classifier construction: many choices...

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Support Vector Machines

Guyon, Vapnik Heisele, Serre, Poggio, 2001,....

Boosting

Viola, Jones 2001, Torralba et al. 2004, Opelt et al. 2006,....

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998 ...

Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003 ...

K. Grauman, B. Leibe

Slide adapted from Antonio Torralba
Boosting

- Build a strong classifier by combining number of “weak classifiers”, which need only be better than chance
- Sequential learning process: at each iteration, add a weak classifier
- Flexible to choice of weak learner
 - including fast simple classifiers that alone may be inaccurate
- We’ll look at the AdaBoost algorithm
 - Easy to implement
 - Base learning algorithm for Viola-Jones face detector

AdaBoost: Intuition

Consider a 2-d feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Figure adapted from Freund and Schapire
AdaBoost: Intuition

Weights Increased

Weak Classifier 1

Weak Classifier 2

Weak classifier 3
AdaBoost: Intuition

Final classifier is combination of the weak classifiers

Boosting: Training procedure

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest *weighted* training error
 - Raise the weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Slide credit: Lana Lazebnik
AdaBoost Algorithm

1. Normalize the weights:
 \[w_1 = \frac{1}{N} \sum_{i=1}^{N} w_{1,i} \]
 so that \(w_t \) is a probability distribution.

2. For each feature, \(j \), train a classifier \(h_j \) which is restricted to using a single feature. The error is evaluated with respect to \(w_t \):
 \[\epsilon_j = \sum_i w_t i [h_j(x_i) \neq y_i] \]

3. Choose the classifier, \(h_j \), with the lowest error \(\epsilon_j \).

4. Update the weights:
 \[w_{t+1,i} = \frac{w_t,i}{Z_{t+1}} \exp(-\epsilon_j) \]
 where \(\epsilon_j = 0 \) if example \(x_i \) is classified correctly, \(\epsilon_j = 1 \) otherwise, and
 \[Z_{t+1} = \sum_i w_{t+1,i} \]

The final strong classifier is:
\[h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \geq \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases} \]
where \(\alpha_t = \log \frac{1}{\epsilon_t} \)

Faces: terminology

- **Detection**: given an image, where is the face?

- **Recognition**: whose face is it?
Example: Face detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a “patch”/window

- Now we’ll take AdaBoost and see how the Viola-Jones face detector works

Feature extraction

“Rectangular” filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images \(\rightarrow\) scale features directly for same cost

Viola & Jones, CVPR 2001
Large library of filters

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Which subset of these features should we use to determine if a window has a face?

Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for feature+classifier selection

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

resulting weak classifier:

\[
h_t(x) = \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases}
\]

For next round, reweight the examples according to errors, choose another filter/threshold combo.
• Even if the filters are fast to compute, each new image has a lot of possible windows to search.

• How to make the detection more efficient?

Cascading classifiers for detection

For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,

- Filter for promising regions with an initial inexpensive classifier
- Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

Figure from Viola & Jones CVPR 2001
Viola-Jones Face Detector: Summary

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

Key ideas:
- Integral images for fast feature evaluation
- Boosting for feature selection
- Attentional cascade for fast rejection of non-face windows

Viola-Jones Face Detector: Results

First two features selected

Viola-Jones Face Detector: Results
Viola-Jones Face Detector: Results
Detecting profile faces?

Can we use the same detector?

Viola-Jones Face Detector: Results
Example application

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A. “Hello! My name is... Buffy” - Automatic naming of characters in TV video, BMVC 2006.
http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example application: faces in photos

Riya's Personal Search lets you upload and search your own photos by name. You can keep them private or make them public and share with all Riya searchers. We allow you to use face and text recognition to search your own photos.
Consumer application: iPhoto 2009

Can be trained to recognize pets!

http://www.apple.com/ilife/iphoto/

Consumer application: iPhoto 2009

Things iPhoto thinks are faces

- Other classes that might work with global appearance in a window?
Pedestrian detection

- Detecting upright, walking humans also possible using sliding window's appearance/texture; e.g.,

 - SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]
 - Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]
 - SVM with HoGs [Dalal & Triggs, CVPR 2005]

- Other classes that might work with global appearance in a window?
Penguin detection & identification

African penguins (*Spheniscus demersus*) carry a pattern of black spots on their chests that does not change from season to season during their adult life. Further, as far as we can tell, no two penguins have exactly the same pattern. We have developed a real-time system that can confidently locate African penguins whose chests are visible within video sequences or still images. An extraction of the chest spot pattern allows the generation of a unique biometrical identifier for each penguin. Using these identifiers an authentication of filmed or photographed African penguins against a population database can be performed. This paper provides a detailed technical description of the developed system and outlines the scope and the conditions of application.

This project uses the Viola-Jones Adaboost face detection algorithm to detect penguin chests, and then matches the pattern of spots to identify a particular penguin.

Use rectangular features, select good features to distinguish the chest from non-chests with Adaboost.
Given a detected chest, try to extract the whole chest for this particular penguin.

Perform **identification** by matching the pattern of spots to a database of known penguins.

Penguin detection & identification

Figure 1. Identification of an African Penguin by its Chest Pattern: Screenshot of Software Prototype; African penguins carry a unique pattern of black spots on their chest. The detection of the chest location and the decomposition of the spot pattern allow checking a photographed individual (here penguin ‘David’ from Bristol Zoo) against a population database. (Figure source [18], [19])

Define highlights:

- Sliding window detection and global appearance descriptors:
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes

Define limitations:

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low
Limitations (continued)

- Not all objects are “box” shaped

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint

- Objects with less-regular textures not captured well with holistic appearance-based descriptions
Limitations (continued)

• If considering windows in isolation, context is lost

Sliding window Detector’s view

Figure credit: Derek Hoiem

Limitations (continued)

• In practice, often entails large, cropped training set (expensive)
• Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni
Summary:
Detection as classification

– Supervised classification
 • Loss and risk, Bayes rule
 • Skin color detection example

– Sliding window detection
 • Classifiers, boosting algorithm, cascades
 • Face detection example

– Limitations of a global appearance description
– Limitations of sliding window detectors