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Discriminative classifiers for
object classification
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Last time

— Supervised classification
* Loss and risk, Bayes rule
* Skin color detection example
— Sliding window detection
* Classifiers, boosting algorithm, cascades
* Face detection example

— Limitations of a global appearance description
— Limitations of sliding window detectors
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Example: learning skin colors

* We can represent a class-conditional density using a
histogram (a “non-parametric” distribution)

P(x|skin)

U 5

Feature x = Hue
Now we get a new image, A

and want to label each pixel
as skin or non-skin.

P(x|not skin)

Feature x = Hue

Bayes rule
posterior "keA"hOOd priAor
{P(x | Skinﬂ’(sking
P(skin|x) =
P(x)

P(skin| x) a P(x|skin)P(skin)
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Detection via classification: Main idea

Fleshing out this
pipeline a bit more,
we need to:

1. Obtain training data
2. Define features
3. Define classifier

Training examples
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Visual Object Recognition Tutorial
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Feature extraction: rectangular filters

“Rectangular” filters
I m Feature output is difference
between adjacent regions
== —
i S— :! ;
@]

Value at (x,y) is
sum of pixels

Efficiently computable [ | shove and to the

with integral image: any - left of (x,y) | ’ X
sum can be computed } [ e :[
in constant time S - . /

Avoid scaling images 2>
Scale features direCtIy Integral image D=1+4-(2+3)

for same cost = A+(A+B+C+D)=(4+C + A+ B)
=0

Visual Object Recognition Tutorial

Viola & Jones, CVPR 2001

Feature extraction: filter library
Considering all
- . i possible filter
_ = parameters:
i E position, scale,

and type:

——] — 180,000+
e possible features

associated with
each 24 x 24

" window
. e

mll’

Use AdaBoost both to select the informative features
and to form the classifier
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AdaBoost for feature+classifier selection

e \Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

L . 16, 16, Resulting weak classifier:

-1 otherwise

| | ol eoe oo e h%g{ﬂ if £(x)> 6,

1 For next round, reweight the
1 f(X) —> .
t examples according to errors,

Outputs of a possible choose another filter/threshold
rectangle feature on combo

faces and non-faces.

Viola-Jones Face Detector: Results
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Outline

e Discriminative classifiers
— Boosting (last time)
— Nearest neighbors

— Support vector machines
* Application to pedestrian detection
* Application to gender classification

Nearest Neighbor classification

» Assign label of nearest training data point to each
test data point

Black = negative
Red = positive

Novel test example

Closest to a
positive example
from the training
set, so classify it
as positive.

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2D data




K-Nearest Neighbors classification

» For a new point, find the k closest points from training data
» Labels of the k points “vote” to classify

Black = negative
Red = positive

k=5

If query lands here, the 5
NN consist of 3 negatives
and 2 positives, so we
classify it as negative.

Source: D. Lowe

Example: nearest neighbor classification

* We could identify the penguin in the new view based on the
distance between its chest spot pattern and all the stored

penguins’ patterns.

Labeled database of known
penguin examples
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Nearest neighbors: pros and cons

* Pros:
— Simple to implement
— Flexible to feature / distance choices
— Naturally handles multi-class cases

— Can do well in practice with enough representative
data

* Cons:
— Large search problem to find nearest neighbors
— Storage of data
— Must know we have a meaningful distance function

Outline

e Discriminative classifiers
— Boosting (last time)
— Nearest neighbors

— Support vector machines
* Application to pedestrian detection

* Application to gender classification

11/12/2009
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Linear classifiers

Lines in R2

. ol




Lines in R?2

%

.

o f] ]

ax+cy+b=0

!

w-Xx+b=0

ax+cy+b=0

!

w-x+b=0
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ax+cy+b=0

!

w-Xx+b=0

distance from
point to line

Na? +¢c?

ax+cy+b=0

!

w-x+b=0

distance from
point to line

11/12/2009
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Linear classifiers

* Find linear function to separate positive and
negative examples

® X, positive: X,-w+b2>0

X, negative: X,-w+b<0

Which line
is best?

Support Vector Machines (SVMs)

» Discriminative
classifier based on
optimal separating
line (for 2d case)

* Maximize the margin
between the positive
and negative training
examples

11/12/2009
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Support vector machines

¢ Want line that maximizes the margin.

% o Y\ ® X, positive (y, =1):  x,-w+b>1
X, negative(y, =-1): x,-w+b<-1

® For support, vectors, X, -W+b==1

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998

Support vector machines

e Want line that maximizes the margin.

X, positive (y, =1): X, wW+b2>1
X, negative(y, =-1): Xx,-w+b<-1

For support, vectors, X, - W+b==1

e Distance between point | X, W+D|

and line: | w|
For support vectors:
wa+b:J_r71 =12
Support vectors ® MAaginm W] W] - M M _M

11/12/2009
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Support vector machines

¢ Want line that maximizes the margin.

X, positive (y, =1): X, wW+b2>1
X, negative(y, =-1): x,-w+b<-1

For support, vectors, X, -W+b==1

Distance between point | X, W+b]|
and line: | w|

Therefore, the marginis 2/ ||w||

Finding the maximum margin line

1. Maximize margin 2/||w||
2. Correctly classify all training data points:

X, positive (y;, =1): X, wW+b2>1
X, negative(y, =-1): x,-w+b<-1

Quadratic optimization problem:

L 1
Minimize EWTW

: One constraint for each
; ' >
Subjectto y(w-x;+b) > 1= training point.

Note sign trick.

IC. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1
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Finding the maximum margin line

« Solution: W=) a,yX,

/

learned Support
weight vector

Finding the maximum margin line

+ Solution: W= a,yx,
b=y,—wx, (forany support vector)
W-X+b= Zi a,yX X +b

» Classification function:
. If f(x) < O, classify
f(x) =Ss1gn (W "X+ b) as negative,

. if f(x) > 0, classify
= sign E X X+ b) as positive

* Notice that it relies on an inner product between the test
point x and the support vectors x;

* (Solving the optimization problem also involves
computing the inner products x; - x; between all pairs of
training points)

11/12/2009
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Questions

How is the SVM objective different from the
boosting objective?

What if the features are not 2d?

What if the data is not linearly separable?

What if we have more than just two
categories?

Questions

How is the SVM objective different from the
boosting objective?
What if the features are not 2d?

— Generalizes to d-dimensions — replace line with
“hyperplane”

What if the data is not linearly separable?

What if we have more than just two
categories?

11/12/2009
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Planes in R3
a X
(x09y09£0) Let w= b X= y
: ) ’

ax+by+cz+d =0

!

w-x+d=0

D= ‘axo +by0 + ¢z +d‘ _ w'x+d distance from
B \/a2 +bh?+c? a HWH point to plane

Hyperplanes in R"

Hyperplane H is set of all vectors X € R
which satisfy:

Wlxl—I_szz +...+ann+b:()

!

wx+b=0

T distance from
W X+b
D(H,x) =——— pointto
Wl hyperplane
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Questions

e What if the features are not 2d?
 What if the data is not linearly separable?

 What if we have more than just two
categories?

Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:

But what are we going to do if the dataset is just too hard?

0 X
How about... mapping data to a higher-dimensional
space:

18



Non-linear SVMs: feature spaces

General idea: the original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

N ..
°. . . d ° D: x— @(x) ¥ *

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

Nonlinear SVMs

» The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(x;, Xj) =o(x;) (D(Xj)

» This gives a nonlinear decision boundary in the
original feature space:

Y, yK(X,,X) +b

11/12/2009
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Examples of kernel functions

Linear: K(x,,x,) = xiij

-
5=
——= )

Gaussian RBF: K(x,x,) =exp(- Py
(o2

Histogram intersection:

K(xi’xj) = Zmin(xi (k)’xj (k)

Questions

e What if the features are not 2d?
 What if the data is not linearly separable?

e What if we have more than just two
categories?

11/12/2009
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Multi-class SVMs

Achieve multi-class classifier by combining a number of binary
classifiers

One vs. all
— Training: learn an SVM for each class vs. the rest

— Testing: apply each SVM to test example and assign to it
the class of the SVM that returns the highest decision
value

One vs. one
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to
the test example

SVMs for recognition

. Define your representation for each
example.

. Select a kernel function. nowraces |

. Compute pairwise kernel values m 8 Ymge

between labeled examples u = E"-ge:.

. Give this “kernel matrix” to SVM 0% . : |

optimization software to identify “:ft l
support vectors & weights. wces O | O |

. To classify a new example: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.

21
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Pedestrian detection

e Detecting upright, walking humans also possible using sliding
window’s appearance/texture; e.g.,

SREONRTENES |
RYRRLERAR LY
- MR NEN

SVM with Haar wavelets Space-time rectangle SVM with HoGs [Dalal &
[Papageorgiou & Poggio, 1JCV features [Viola, Jones & Triggs, CVPR 2005]
2000] Snow, ICCV 2003]

Visual Object Recognition Tutorial

Example: pedestrian detection
with HoG’s and SVM’s

Orientation Voting

— O\'erlapping Blocks

-

Input Image Gradient Image

Lo:..al \101 1111hzat|0n

—

» Map each grid cell in the input
window to a histogram counting
the gradients per orientation.

* Train a linear SVM using training
set of pedestrian vs. non-
pedestrian windows.

Visual Object Recognition Tutorial

Dalal & Triggs, CVPR 2005 Code available: http://pascal.inrialpes.fr/soft/olt/
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Pedestrian detection with HoOG’s & SVM’s

e Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs,
International Conference on Computer Vision & Pattern Recognition - June 2005

e http://lear.inrialpes.fr/pubs/2005/DT05/

Example: learning gender with SVMs

ad

* > F M
Gender | . F| | M
Classifier

B |- :

—

Moghaddam and Yang, Learning Gender with Support Faces,
TPAMI 2002.

Moghaddam and Yang, Face & Gesture 2000.

11/12/2009
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Face alignment
processing

L

Multiscale Feature
Head Search Search

—

Processed
faces

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Learning gender with SVMs

« Training examples:
— 1044 males
— 713 females

» Experiment with various kernels, select
Gaussian RBF

x|

xi—xjH

)
20

K(x,,%;) = exp(-

11/12/2009
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Support Faces

FEMALEK

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Classifier Performance

Classifier Error Rate

Overall Male | Female
SVM with RBF kernel 3.38% 2.05% 4.79%
SVM with cubic polynomial kernel 4.35"% 4.21% 5.59%
Large Ensemble of RBF 5.54% 4.59% 6.55%
Classical RBF 7.79% 6.89% 8.75%
Quadratic classifier 10.63% 9.44% | 11.88%
Fisher linear discriminant 13.03% 12.31% 13.78%
Nearest neighbor 27.16% 26.53% 28.04%
Linear classifier 58.95% | 58.47% | 59.45%

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

11/12/2009

25



11/12/2009

Gender perception experiment:
How well can humans do?

» Subjects:
— 30 people (22 male, 8 female)
— Ages mid-20’s to mid-40’s
» Test data:
— 254 face images (6 males, 4 females)
— Low res and high res versions
» Task:
— Classify as male or female, forced choice
— No time limit

Moghaddam and Yang, Face & Gesture 2000.

Gender perception experiment:
How well can humans do?

84 x 48

21 x 12

Sttimuli —

N =4032 N=252

High-R Low-
Results —. Il R Hes o =3.7%

6.54% 30.7%

Error Error

Moghaddam and Yang, Face & Gesture 2000.
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Human vs. Machine

% Error Rates

* SVMs performed

30

B Low-—Res | better than any
2sf L HRes 7 single human
20| 1 test subject, at
15} 1 either resolution

107

5t

i

SVM Human

Figure 6. SVM vs. Human performance

Hardest examples for humans

L]

Top five human misclassifications

Moghaddam and Yang, Face & Gesture 2000.

11/12/2009
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SVMs: Pros and cons

* Pros

« Many publicly available SVM packages:
http://www.kernel-machines.org/software

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
« Kernel-based framework is very powerful, flexible
« Often a sparse set of support vectors — compact at test time

* Work very well in practice, even with very small training
sample sizes

 Cons
* No “direct” multi-class SVM, must combine two-class SVMs
« Can be tricky to select best kernel function for a problem

« Computation, memory

— During training time, must compute matrix of kernel values for
every pair of examples

— Learning can take a very long time for large-scale problems

Adapted from | ana | azebnik

Summary

 Discriminative classifiers applied to object
detection / categorization problems.
— Boosting (last time)
— Nearest neighbors

— Support vector machines
* Application to pedestrian detection
* Application to gender classification

11/12/2009
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