

### Last time

- Supervised classification
  - Loss and risk, Bayes rule
  - Skin color detection example
- Sliding window detection
  - Classifiers, boosting algorithm, cascades
  - Face detection example
- Limitations of a global appearance description
- Limitations of sliding window detectors

# Example: learning skin colors

 We can represent a class-conditional density using a histogram (a "non-parametric" distribution)



Now we get a new image, and want to label each pixel as skin or non-skin.



# Bayes rule

$$P(skin \mid x) = \frac{P(x \mid skin)P(skin)}{P(x)}$$

 $P(skin \mid x) \alpha P(x \mid skin) P(skin)$ 









### AdaBoost for feature+classifier selection

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.



faces and non-faces.

Resulting weak classifier:

$$h_t(x) \ = \left\{ \begin{array}{ll} +1 & \mbox{if} \ f_t(x) > \theta_t \\ -1 & \mbox{otherwise} \end{array} \right.$$

For next round, reweight the examples according to errors, choose another filter/threshold combo.



### **Outline**

- Discriminative classifiers
  - Boosting (last time)
  - Nearest neighbors
  - Support vector machines
    - Application to pedestrian detection
    - Application to gender classification

# **Nearest Neighbor classification**

Assign label of nearest training data point to each test data point

Black = negative Red = positive



Voronoi partitioning of feature space for 2-category 2D data

# **K-Nearest Neighbors classification**

- For a new point, find the k closest points from training data
- Labels of the k points "vote" to classify



### Example: nearest neighbor classification

 We could identify the penguin in the new view based on the distance between its chest spot pattern and all the stored penguins' patterns.



# Nearest neighbors: pros and cons

- Pros:
  - Simple to implement
  - Flexible to feature / distance choices
  - Naturally handles multi-class cases
  - Can do well in practice with enough representative data
- Cons:
  - Large search problem to find nearest neighbors
  - Storage of data
  - Must know we have a meaningful distance function

### **Outline**

- Discriminative classifiers
  - Boosting (last time)
  - Nearest neighbors
  - Support vector machines
    - Application to pedestrian detection
    - Application to gender classification













# Linear classifiers • Find linear function to separate positive and negative examples $\mathbf{x}_i \text{ positive}: \quad \mathbf{x}_i \cdot \mathbf{w} + b \ge 0$ $\mathbf{x}_i \text{ negative}: \quad \mathbf{x}_i \cdot \mathbf{w} + b < 0$ Which line is best?



### Support vector machines

· Want line that maximizes the margin.



- $\mathbf{x}_i$  positive  $(y_i = 1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$  $\mathbf{x}_i$  negative  $(y_i = -1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$
- For support, vectors,  $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

### Support vector machines

· Want line that maximizes the margin.



- $\mathbf{x}_i$  positive  $(y_i = 1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$
- $\mathbf{x}_i$  negative  $(y_i = -1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$
- For support, vectors,  $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$
- Distance between point and line:  $\frac{\|\mathbf{x}_i \cdot \mathbf{w} + b\|}{\|\mathbf{w}\|}$

For support vectors:

$$\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \qquad M = \left| \frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|} \right| = \frac{2}{\|\mathbf{w}\|}$$

### Support vector machines

Want line that maximizes the margin.



- $\mathbf{x}_i$  positive  $(y_i = 1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$
- $\mathbf{x}_i$  negative  $(y_i = -1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

For support, vectors,  $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ 

- Distance between point and line:

Therefore, the margin is  $2 / ||\mathbf{w}||$ 

### Finding the maximum margin line

- 1. Maximize margin  $2/||\mathbf{w}||$
- 2. Correctly classify all training data points:

$$\mathbf{x}_i$$
 positive  $(y_i = 1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ 

$$\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$$

$$\mathbf{x}_i$$
 negative  $(y_i = -1)$ :  $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ 

$$\mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

Quadratic optimization problem:

Minimize 
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

Subject to  $y_i(\mathbf{w}\cdot\mathbf{x}_i+b) \ge 1$ 

One constraint for each training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

### Finding the maximum margin line

• Solution:  $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ | learned | Support | vector |

### Finding the maximum margin line

- Solution:  $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$   $b = y_{i} \mathbf{w} \cdot \mathbf{x}_{i} \quad \text{(for any support vector)}$   $\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$
- Classification function:

$$f(x) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

$$= \operatorname{sign}(\sum_{i} \alpha_{i} \mathbf{x}_{i} \cdot \mathbf{x} + \mathbf{b})$$
If  $f(x) < 0$ , classify as negative, if  $f(x) > 0$ , classify as positive

- Notice that it relies on an inner product between the test point x and the support vectors x;
- (Solving the optimization problem also involves computing the inner products x<sub>i</sub> · x<sub>j</sub> between all pairs of training points)

### Questions

- How is the SVM objective different from the boosting objective?
- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

# Questions

- How is the SVM objective different from the boosting objective?
- What if the features are not 2d?
  - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
- What if we have more than just two categories?





$$ax + by + cz + d = 0$$

$$\mathbf{w} \cdot \mathbf{x} + d = 0$$

$$D = \frac{\left|ax_0 + by_0 + cz_0 + d\right|}{\sqrt{a^2 + b^2 + c^2}} = \frac{\mathbf{w}^{\mathrm{T}}\mathbf{x} + d}{\left\|\mathbf{w}\right\|} \quad \text{distance from point to plane}$$

# Hyperplanes in R<sup>n</sup>

Hyperplane H is set of all vectors  $\mathbf{X} \in \mathbb{R}^n$  which satisfy:

$$w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + b = 0$$

$$\mathbf{w}^{\mathsf{T}} \mathbf{x} + b = 0$$

$$D(H, \mathbf{x}) = \frac{\mathbf{w}^{\mathrm{T}} \mathbf{x} + b}{\|\mathbf{w}\|}$$
 distance from point to hyperplane

# Questions

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

### Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:
- But what are we going to do if the dataset is just too hard?
- How about... mapping data to a higher-dimensional
- space:



# Non-linear SVMs: feature spaces

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:



Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

### Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation  $\varphi(\mathbf{x})$ , define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

• This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

### Examples of kernel functions

Linear:

$$K(x_i, x_j) = x_i^T x_j$$

- Gaussian RBF:  $K(x_i, x_j) = \exp(-\frac{\|x_i x_j\|^2}{2\sigma^2})$
- Histogram intersection:

$$K(x_i, x_j) = \sum_{k} \min(x_i(k), x_j(k))$$

### Questions

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

### Multi-class SVMs

Achieve multi-class classifier by combining a number of binary classifiers

### One vs. all

- Training: learn an SVM for each class vs. the rest
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

### One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

# SVMs for recognition

- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- Give this "kernel matrix" to SVM optimization software to identify support vectors & weights.
- To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.



### **Pedestrian detection**

• Detecting upright, walking humans also possible using sliding window's appearance/texture; e.g.,



SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]



Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]



SVM with HoGs [Dalal & Triggs, CVPR 2005]

# Example: pedestrian detection with HoG's and SVM's Orientation Voting Overlapping Blocks Input Image Gradient Image • Map each grid cell in the input window to a histogram counting the gradients per orientation. • Train a linear SVM using training set of pedestrian vs. non-pedestrian windows. Dalal & Triggs, CVPR 2005 Code available: http://pascal.inrialpes.fr/soft/olt/

### Pedestrian detection with HoG's & SVM's



- Histograms of Oriented Gradients for Human Detection, <u>Navneet Dalal</u>, <u>Bill Triqqs</u>, International Conference on Computer Vision & Pattern Recognition - June 2005
- http://lear.inrialpes.fr/pubs/2005/DT05/

# Example: learning gender with SVMs



Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Moghaddam and Yang, Face & Gesture 2000.



# Learning gender with SVMs

- Training examples:
  - 1044 males
  - -713 females
- Experiment with various kernels, select Gaussian RBF

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$



# Classifier Performance

| Classifier                       | Error Rate |        |        |
|----------------------------------|------------|--------|--------|
|                                  | Overall    | Male   | Female |
| SVM with RBF kernel              | 3.38%      | 2.05%  | 4.79%  |
| SVM with cubic polynomial kernel | 4.88%      | 4.21%  | 5.59%  |
| Large Ensemble of RBF            | 5.54%      | 4.59%  | 6.55%  |
| Classical RBF                    | 7.79%      | 6.89%  | 8.75%  |
| Quadratic classifier             | 10.63%     | 9.44%  | 11.88% |
| Fisher linear discriminant       | 13.03%     | 12.31% | 13.78% |
| Nearest neighbor                 | 27.16%     | 26.53% | 28.04% |
| Linear classifier                | 58.95%     | 58.47% | 59.45% |

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

# Gender perception experiment: How well can humans do?

- Subjects:
  - 30 people (22 male, 8 female)
  - Ages mid-20's to mid-40's
- Test data:
  - 254 face images (6 males, 4 females)
  - Low res and high res versions
- Task:
  - Classify as male or female, forced choice
  - No time limit

Moghaddam and Yang, Face & Gesture 2000.



### Human vs. Machine



 SVMs performed better than any single human test subject, at either resolution

Figure 6. SVM vs. Human performance

# Hardest examples for humans



Top five human misclassifications

Moghaddam and Yang, Face & Gesture 2000.

### SVMs: Pros and cons

### Pros

- Many publicly available SVM packages: http://www.kernel-machines.org/software
   http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- · Kernel-based framework is very powerful, flexible
- Often a sparse set of support vectors compact at test time
- Work very well in practice, even with very small training sample sizes

### Cons

- No "direct" multi-class SVM, must combine two-class SVMs
- · Can be tricky to select best kernel function for a problem
- · Computation, memory
  - During training time, must compute matrix of kernel values for every pair of examples
  - Learning can take a very long time for large-scale problems

Adapted from Lana Lazebnik

# Summary

- Discriminative classifiers applied to object detection / categorization problems.
  - Boosting (last time)
  - Nearest neighbors
  - Support vector machines
    - Application to pedestrian detection
    - Application to gender classification