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Tracking

Tuesday, Nov 24

Kristen Grauman

UT‐Austin

Announcements

• Pset 5 out tonight, due 12/4 
– Shorter assignment

– Auto extension til 12/8

• I will not hold office hours tomorrow 5‐6 pm 
due to Thanksgivingdue to Thanksgiving
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Outline
• Last time: Motion

– Motion field and parallaxp
– Optical flow, brightness constancy
– Aperture problem

• Today: Tracking
– Tracking as inference
– Linear models of dynamicsy
– Kalman filters
– General challenges in tracking

Motion estimation techniques
• Direct methods

• Directly recover image motion at each pixel from spatio-temporal 
image brightness variations

• Dense motion fields but sensitive to appearance variations• Dense motion fields, but sensitive to appearance variations
• Suitable for video and when image motion is small 
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Direct methods: Estimating optical flow

• Given two subsequent frames, estimate the apparent 
motion field between them.

I(x,y,t–1) I(x,y,t)

• Key assumptions
• Brightness constancy:  projection of the same point looks the 

same in every frame
• Small motion: points do not move very far
• Spatial coherence: points move like their neighbors

The aperture problem

Perceived motion
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The aperture problem

Actual motion

Solving the aperture problem (grayscale image)

• How to get more equations for a pixel?
• Spatial coherence constraint: pretend the pixel’s 

neighbors have the same (u,v)
If 5 5 i d th t i 25 ti i l• If we use a 5x5 window, that gives us 25 equations per pixel
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Outline
• Last time: Motion

– Motion field and parallaxp
– Optical flow, brightness constancy
– Aperture problem

• Today: Tracking
– Tracking as inference
– Linear models of dynamicsy
– Kalman filters
– General challenges in tracking

Tracking: some applications

Body pose tracking, 
activity recognition

Video-based 
interfaces

Censusing a bat 
population

SurveillanceMedical apps
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Optical flow for tracking?
If we have more than just a pair of frames, we could 

compute flow from one to the next:

…

…

But flow only reliable for small motions, and we may have 
occlusions, textureless regions that yield bad estimates 
anyway…

Motion estimation techniques
• Direct methods

• Directly recover image motion at each pixel from spatio-temporal 
image brightness variations

• Dense motion fields but sensitive to appearance variations• Dense motion fields, but sensitive to appearance variations
• Suitable for video and when image motion is small 

• Feature-based methods
• Extract visual features (corners, textured areas) and track them 

over multiple frames
• Sparse motion fields, but more robust trackingSparse motion fields, but more robust tracking
• Suitable when image motion is large (10s of pixels)
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Feature-based matching for motion

Interesting point
Best matching 
neighborhood

Time t Time t+1
SearchSearch 
window

Search window is centered at the point 
where we last saw the feature, in image I1.

Best match = position where we have the 
highest normalized cross-correlation value.

Feature-based matching for motion

• For a discrete matching search, what are the 
tradeoffs of the chosen search window size?

• Which patches to track?p
• Select interest points – e.g. corners

• Where should the search window be placed?
• Near match at previous frame
• More generally, taking into account the expected 

dynamics of the object
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Detection vs. tracking

…

t=1 t=2 t=20 t=21

Detection vs. tracking

…

Detection: We detect the object independently in 
each frame and can record its position over time, 
e.g., based on blob’s centroid or detection 
window coordinates
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Detection vs. tracking

…

Tracking with dynamics: We use image 
measurements to estimate position of object, but 
also incorporate position predicted by dynamics, 
i.e., our expectation of object’s motion pattern.

Detection vs. tracking

…

Tracking with dynamics: We use image 
measurements to estimate position of object, but 
also incorporate position predicted by dynamics, 
i.e., our expectation of object’s motion pattern.
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Tracking with dynamics
• Use model of expected motion to predict where 

objects will occur in next frame, even before seeing 
the imagethe image.

• Intent: 
– Do less work looking for the object, restrict the search.
– Get improved estimates since measurement noise is 

tempered by smoothness, dynamics priors.
• Assumption: continuous motion patterns:• Assumption: continuous motion patterns:

– Camera is not moving instantly to new viewpoint
– Objects do not disappear and reappear in different 

places in the scene
– Gradual change in pose between camera and scene

Tracking as inference
• The hidden state consists of the true parameters 

we care about, denoted X.

• The measurement is our noisy observation that 
results from the underlying state, denoted Y.
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State vs. observation

Hidden state : parameters of interest
Measurement : what we get to directly observe

Tracking as inference
• The hidden state consists of the true parameters 

we care about, denoted X.

• The measurement is our noisy observation that 
results from the underlying state, denoted Y.

• At each time step, state changes (from Xt-1 to Xt ) 
and we get a new observation Yand we get a new observation Yt.

• Our goal: recover most likely state Xt given
– All observations seen so far.
– Knowledge about dynamics of state transitions.
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Notation reminder

Random variable with Gaussian probability

),(~ Σμx N

• Random variable with Gaussian probability 
distribution that has the mean vector μ and 
covariance matrix Σ.

• x and μ are d-dimensional, Σ is d x d.
d=2 d=1

If x is 1 d weIf x is 1-d, we 
just have one 
Σ parameter -

the 
variance: σ2

measurement

Tracking as inference: intuition

Belief: prediction

Corrected prediction

Belief: prediction

old belief Time t Time t+1
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Standard independence assumptions

• Only immediate past state influences current 
state

• Measurements at time i only depend on the 
current state

• Prediction:
– Given the measurements we have seen up to 

Tracking as inference

this point, what state should we predict?

• Correction:
N i th t t h t

( )10 ,, −tt yyXP K

– Now given the current measurement, what 
state should we predict?

( )tt yyXP ,,0 K
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Questions
• How to represent the known dynamics that govern the 

changes in the states?

• How to represent relationship between state and 
measurements, plus our uncertainty in the measurements?

• How to compute each cycle of updates?

Representation: We’ll consider the class of linearp
dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.

Linear dynamic model
• Describe the a priori knowledge about 

– System dynamics model: represents evolution y y p
of state over time, with noise.

Measurement model: at every time step we

);(~ 1 dtt N ΣDxx −

n x n n x 1n x 1

– Measurement model: at every time step we 
get a noisy measurement of the state.

);(~ mtt N ΣMxy
m x n n x 1m x 1
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Example: randomly 
drifting points

• Consider a stationary object, with state as position

);(~ 1 dtt N ΣDxx −

• Position is constant, only motion due to random 
noise term.

• State evolution is described by identity matrix D=I

Example: Constant 
velocity (1D points)

1 d position 
measurements

states1 
d 

po
si

tio
n 

time
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• State vector: position p and velocity v

Example: Constant 
velocity (1D points)

ε+Δ+= )( vtpp⎤⎡p (greek letters

);(~ 1 dtt N ΣDxx −

);(~ mtt N ΣMxy
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Example: Constant 
acceleration (1D points)
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Example: Constant 
acceleration (1D points)
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• State vector: position p, velocity v, and acceleration a.
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• Measurement is position only

Questions
• How to represent the known dynamics that govern the 

changes in the states?

• How to represent relationship between state and 
measurements, plus our uncertainty in the measurements?

• How to compute each cycle of updates?

Representation: We’ll consider the class of linearp
dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.
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The Kalman filter

• Method for tracking linear dynamical models in 
Gaussian noiseGaussian noise

• The predicted/corrected state distributions are 
Gaussian
– Only need to maintain the mean and covariance
– The calculations are easy (all the integrals can be 

done in closed form)done in closed form)

Kalman filter
Know prediction of 
state, and next 
measurement

Know corrected state 
from previous time step, 
and all measurements up 

Receive 
measurement measurement 

Update distribution over 
current state.

p
to the current one 
Predict distribution over 
next state.

Time update
(“Predict”)

Measurement update
(“Correct”)

( )yyXP ( )
Time advances: t++

( )10 ,, −tt yyXP K

−−
tt σμ ,

Mean and std. dev.
of predicted state:

( )tt yyXP ,,0 K

++
tt σμ ,

Mean and std. dev.
of corrected state:
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Notation reminder

Random variable with Gaussian probability

),(~ Σμx N

• Random variable with Gaussian probability 
distribution that has the mean vector μ and 
covariance matrix Σ.

• x and μ are d-dimensional, Σ is d x d.
d=2 d=1

If x is 1 d weIf x is 1-d, we 
just have one 
Σ parameter -

the 
variance: σ2

1D Kalman filter: Prediction
• Have linear dynamic model defining predicted state 

evolution, with noise
( )2

1,~ dtt dxNX σ

• Want to estimate predicted distribution for next state

• Update the mean:

( ) ( )2
10 )(,,, −−
− = tttt NyyXP σμK

( )1, dtt −

• Update the variance:

+
−

− = 1tt dμμ

2
1

22 )()( +
−

− += tdt dσσσ
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1D Kalman filter: Correction
• Have linear model defining the mapping of state 

to measurements:
( )2,~ mtt mxNY σ

• Want to estimate corrected distribution given 
latest meas.:

• Update the mean:

( )mtt

( ) ( )2
0 )(,,, ++= tttt NyyXP σμK
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• Update the variance:
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• What if there is no prediction uncertainty

f

−+ = tt μμ 0)( 2 =+
tσ

?)0(

?)0( =−
tσ

The measurement is ignored!

• What if there is no measurement uncertainty ?)0( =mσ

m
yt

t =+μ 0)( 2 =+
tσ

The prediction is ignored!



11/24/2009

21

Kalman filter processing
o state

Constant velocity model

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 
before and after measurementspo

si
tio

n

time

Time t Time t+1

Kalman filter processing
o state

Constant velocity model

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 
before and after measurementspo

si
tio

n

time

Time t Time t+1
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Kalman filter processing
o state

Constant velocity model

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 
before and after measurementspo

si
tio

n

time

Time t Time t+1

Kalman filter processing
o state

Constant velocity model

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 
before and after measurementspo

si
tio

n

time

Time t Time t+1
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Outline
• Last time: Motion

– Motion field and parallaxp
– Optical flow, brightness constancy
– Aperture problem

• Today: Tracking
– Tracking as inference
– Linear models of dynamicsy
– Kalman filters
– General challenges in tracking

Tracking: issues
• Initialization

– Often done manually

– Background subtraction, detection can also be used

• Data association, multiple tracked objects
– Occlusions, clutter
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Tracking: issues
• Initialization

– Often done manually

– Background subtraction, detection can also be used

• Data association, multiple tracked objects
– Occlusions, clutter

– Which measurements go with which tracks?

Data association
• Simple strategy: only pay attention to the 

measurement that is “closest” to the 
prediction

Slide credit: Lana Lazebnik
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Data association
• Simple strategy: only pay attention to the 

measurement that is “closest” to the 
prediction

Tracking: issues
• Initialization

– Often done manually

– Background subtraction, detection can also be used

• Data association, multiple tracked objects
– Occlusions, clutter

• Deformable and articulated objects
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Tracking via deformable contours
1. Use final contour/model extracted at frame  t as 

an initial solution for frame t+1
2. Evolve initial contour to fit exact object boundary j y

at frame t+1
3. Repeat, initializing with most recent frame.

Tracking Heart Ventricles 
(multiple frames)

Tracking via deformable contours

Visual Dynamics Group, Dept. Engineering Science, University of Oxford.

Traffic monitoring
Human-computer interaction
Animation
Surveillance
Computer assisted diagnosis in medical imaging 

Applications:
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Tracking: issues
• Initialization

– Often done manually

– Background subtraction, detection can also be used

• Data association, multiple tracked objects
– Occlusions, clutter

• Deformable and articulated objects

• Constructing accurate models of dynamicsConstructing accurate models of dynamics
– E.g., Fitting parameters for a linear dynamics model

• Drift
– Accumulation of errors over time

Drift

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 
Appearance. PAMI 2007.
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Summary
• Tracking as inference

– Goal: estimate posterior of object position given p j p g
measurement

• Linear models of dynamics
– Represent state evolution and measurement 

models
• Kalman filters

– Recursive prediction/correction updates to refine 
measurement

• General tracking challenges


