

Linear Filters

Tuesday, Sept 1

Plan for today

- · Image noise
- · Linear filters
 - Smoothing filters
- · Convolution / correlation

Images as functions • We can think of an image as a function, f, from R² to R:

- f(x, y) gives the **intensity** at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - f: [a,b] \times [c,d] → [0, 1.0]
- A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Source: S. Seit

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- · Assumptions:
 - · Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Source: S. Marschner

Moving Average In 2D

Moving Average In 2D

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

Attribute uniform Loop over all pixels in neighborhood around image pixel F[i,j]

Now generalize to allow different weights depending on

reighboring pixel's relative position:
$$G[i,j] = \sum_{u=-k}^k \sum_{v=-k}^k \underbrace{H[u,v]}_{\text{Non-uniform weights}} F[i+u,j+v]$$

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called $\operatorname{cross-correlation},$ denoted $G=H\otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "**kernel**" or "**mask**" H[u,v] is the prescription for the weights in the linear combination.

Averaging filter

• What values belong in the kernel H for the moving average example?

H[u, v]

"box filter"

 $G = H \otimes F$

Smoothing by averaging

depicts box filter: white = high value, black = low value

original

Boundary issues

What is the size of the output?

- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Source: S. Lazebnik

Boundary issues

What about near the edge?

- the filter window falls off the edge of the image
- · need to extrapolate
- · methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Boundary issues

What about near the edge?

- the filter window falls off the edge of the image
- · need to extrapolate
- methods (MATLAB):

- clip filter (black):

- wrap around: - copy edge:

imfilter(f, g, 0) imfilter(f, g, 'circular')

- reflect across edge:

imfilter(f, g, 'replicate') imfilter(f, g, 'symmetric')

Filtering an impulse signal

What is the result of filtering the impulse signal (image) F with the arbitrary kernel H?

F[x, y]

Convolution

- · Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

$$\uparrow$$
Notation for convolution

Н

Convolution vs. correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

$$G = H \otimes F$$

For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ?

Properties of smoothing filters

- · Smoothing
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter

Shift invariant linear system

- · Shift invariant:
 - Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- · Linear:
 - Superposition: h * (f1 + f2) = (h * f1) + (h * f2)
 - Scaling: h * (k f) = k (h * f)

Properties of convolution

- · Linear & shift invariant
- Commutative:

$$f * g = g * f$$

· Associative

$$(f * g) * h = f * (g * h)$$

· Identity:

unit impulse
$$e = [..., 0, 0, 1, 0, 0, ...].$$
 $f * e = f$

· Differentiation:

$$\frac{\partial}{\partial x}(f * g) = \frac{\partial f}{\partial x} * g$$

Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns

Separability

• In some cases, filter is separable, and we can factor into two steps: e.g.,

g	1	2	1	

What is the computational complexity advantage for a separable filter of size k x k, in terms of number of operations per output pixel?

f * (g * h) = (f * g) * h

Effect of smoothing filters

5x5

Additive Gaussian noise

Salt and pepper noise

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- · Linear?

Summary

- · Various models for image "noise"
- · Linear filters and convolution useful for
 - Image smoothing, removing noise
 - Box filter
 - · Gaussian filter
 - · Impact of scale / width of smoothing filter
 - Detecting features (next time)
- · Separable filters more efficient
- · Median filter: a non-linear filter, edge-preserving

Coming up

- Tomorrow (Wed): my office hours cancelled
- TA's available as usual
- Thursday:
 - Matlab tutorial, with guest lecture by Yong Jae
 - Bring questions about Pset 0
- Monday:
 - Pset 0 is due, 11:59 PM
- Tuesday:
 - Lecture: Linear filters, part 2
 - See course page for reading
 - Pset 1 out