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Abstract

In this paper we introduce and experiment with a framework for learning local
perceptual distance functions for visual recognition. We learn a distance func-
tion for each training image as a combination of elementary distances between
patch-based visual features. We apply these combined localdistance functions to
the tasks of image retrieval and classification of novel images. On the Caltech
101 object recognition benchmark, we achieve 60.3% mean recognition across
classes using 15 training images per class, which is better than the best published
performance by Zhang, et al.

1 Introduction

Visual categorization is a difficult task in large part due tothe large variation seen between images
belonging to the same class. Within one semantic class, there can be a large differences in shape,
color, and texture, and objects can be scaled or translated within an image. For some rigid-body
objects, appearance changes greatly with viewing angle, and for articulated objects, such as ani-
mals, the number of possible configurations can grow exponentially with the degrees of freedom.
Furthermore, there is a large number of categories in the world between which humans are able to
distinguish. One oft-cited, conservative estimate puts the total at about 30,000 categories [1], and
this does not consider the identification problem (e.g. telling faces apart).

One of the more successful tools used in visual classification is a class of patch-based shape and
texture features that are invariant or robust to changes in scale, translation, and affine deformations.
These include the Gaussian-derivative jet descriptors of [2], SIFT descriptors [3], shape contexts [4],
and geometric blur [5]. The basic outline of most discriminative approaches which use these types of
features is as follows: (1) given a training image, select a subset of locations or “interest points”, (2)
for each location, select a patch surrounding it, often elliptical or rectangular in shape, (3) compute
a fixed-length feature vector from each patch, usually a summary of edge responses or image gradi-
ents. This gives aset of fixed-length feature vectors for each training image. (4)Define a function
which, given the two sets from two images, returns a value forthe distance (or similarity) between
the images. Then, (5) use distances between pairs of images as input to a learning algorithm, for
example an SVM or nearest neighbor classifier. When given a test image, patches and features are
extracted, distances between the test image and training images are computed, and a classification
is made.



Figure 1: These exemplars are all drawn from thecougar face category of the Caltech 101
dataset, but we can see a great deal of variation. The image onthe left is a clear, color image of
a cougar face. As with mostcougar face exemplars, the locations and appearances of the eyes
and ears are a strong signal for class membership, as well as the color pattern of the face. Now
consider the grayscale center image, where the appearance of the eyes has changed, the ears are no
longer visible, and hue is useless. For this image, the markings around the mouth and the texture of
the fur become a better signal. The image on the right shows the ears, eyes, and mouth, but due to
articulation, the appearance of all have changed again, perhaps representing a common visual sub-
category. If we were to limit ourselves to learning one modelof relative importance across these
features for all images, or even for each category, it could reduce our ability to determine similarity
to these exemplars.

In most approaches, machine learning only comes to play in step (5), after the distances or simi-
larities between training images are computed. In this work, we learn the function in step (4) from
the training data. This is similar in spirit to the recent body of metric learning work in the ma-
chine learning community [6][7][8][9][10]. While these methods have been successfully applied to
recognizing digits, there are a couple drawbacks in applying these methods to the general image
classification problem. First, they would require representing each image as a fixed-length feature
vector. We prefer to use sets of patch-based features, considering both the strong empirical evidence
in their favor and the difficulties in capturing invariancesin fixed-length feature vectors. Second,
these metric-learning algorithms learn one deformation for the entire space of exemplars. To gain
an intuition as to why this is a problem, consider Figure 1.

The goal of this paper is to demonstrate that in the setting ofvisual categorization, it can be useful
to determine the relative importance of visual features on afiner scale. In this work, we attack
the problem from the other extreme, choosing to learn adistance function for each exemplar, where
each function gives a distance value between its training image, orfocal image, and any other image.
These functions can be learned from either multi-way class labels or relative similarity information
in the training data. The distance functions are built on topof elementary distance measures between
patch-based features, and our problem is formulated such that we are learning a weighting over the
features in each of our training images. This approach has two nice properties: (1) the output of the
learning is a quantitative measure of the relative importance of the parts of an image; and (2) the
framework allows us to naturally combine and select features of different types.

We learn the weights using a generalization of the constrained optimization formulation proposed
by Schultz and Joachims [7] for relative comparison data. Using these local distance functions, we
address applications in image browsing, retrieval and classification. In order to perform retrieval
and classification, we use an additional learning step that allows us to compare focal images to one
another, and an inference procedure based on error-correcting output codes to make a class choice.
We show classification results on the Caltech 101 object recognition benchmark, that for some time
has been ade facto standard for multi-category classification. Our mean recognition rate on this
benchmark is 60.3% using only fifteen exemplar images per category, which is an improvement
over the best previously published recognition rate in [11].

2 Distance Functions and Learning Procedure

In this section we will describe the distance functions and the learning procedure in terms of abstract
patch-based image features. Any patch-based features could be used with the framework we present,
and we will wait to address our choice of features in Section 3.

If we haveN training images, we will be solvingN separate learning problems. The training image
for which a given learning problem is being solved will be referred to as itsfocal image. Each



problem is trained with a subset of the remaining training images, which we will refer to as the
learning set for that problem. In the rest of this section we will discuss one such learning problem
and focal image, but keep in mind that in the full framework there areN of these.

We define the distance function we are learning to be a combination of elementary patch-based
distances, each of which are computed between a single patch-based feature in the focal imageF
and aset of features in a candidate imageI, essentially giving us a patch-to-image distance. Any
function between a patch feature and a set of features could be used to compute these elementary
distances; we will discuss our choice in Section 3. If there are M patches in the focal image, we
haveM patch-to-image distances to compute betweenF andI, and we notate each distance in that
set asdFj (I), wherej ∈ [1,M ], and refer to the vector of these asd

F (I). The image-to-image
distance functionD that we learn is a linear combination of these elementary distances. WherewF

is a vector of weights with a weight corresponding to each patch feature:

D(F , I) =

M
∑

j=1

wF
j dFj (I) =

〈

w
F · dF (I)

〉

(1)

Our goal is to learn this weighting over the features in the focal image. We set up our algorithm to
learn from “triplets” of images, each composed of (1) the focal imageF , (2) an image labeled “less
similar” to F , and (3) an image labeled “more similar” toF . This formulation has been used in
other work for its flexibility [7]; it makes it possible to usea relative ranking over images as training
input, but also works naturally with multi-class labels by considering exemplars of the same class as
F to be “more similar” than those of another class.

To set up the learning algorithm, we consider one such triplet: (F , Id, Is), whereId andIs refer
to the dissimilar and similar images, respectively. If we could use our learned distance function for
F to rank these two images relative to one another, we ideally would wantId to have a larger value
thanIs, i.e. D(F , Id) > D(F , Is). Using the formula from the last section, this is equivalent
to

〈

w
F · dF (Id)

〉

>
〈

w
F · dF (Is)

〉

. Let xi = d
F (Id) − d

F (Is), the difference of the two
elementary distance vectors for this triplet, now indexed by i. Now we can write the condition as
〈

w
F · xi

〉

> 0.

For a given focal image, we will constructT of these triplets from our training data (we will discuss
how we choose triplets in Section 5.1). Since we will not be able to find one set of weights that
meets this condition for all triplets, we use a maximal-margin formulation where we allow slack for
triplets that do not meet the condition and try to minimize the total amount of slack allowed. We
also increase the desired margin from zero to one, and constrainw

F to have non-negative elements,
which we denote using�.1.

arg min
w
F ,ξ

1

2

∥

∥w
F

∥

∥

2
+ C

∑T

i=1
ξi

s.t. : ∀(i) ∈ [1, T ] :
〈

w
F · xi

〉

≥ 1− ξi, ξi ≥ 0
w

F � 0

(2)

We chose theL2 regularization in order to be more robust to outliers and noise. Sparsity is also
desirable, and anL1 norm could give more sparse solutions. We do not yet have a direct comparison
between the two within this framework.

This optimization is a generalization of that proposed by Schultz and Joachims in [7] for distance
metric learning. However, our setting is different from theirs in two ways. First, their triplets do
not share the same focal image as they apply their method to learning one metric for all classes and
instances. Second, they arrive at their formulation by assuming that (1) each exemplar is represented
by a single fixed-length vector, and (2) aL2

2
distance between these vectors is used. This would

appear to preclude our use of patch features and more interesting distance measures, but as we show,
this is an unnecessary restriction for the optimization. Thus, a contribution of this paper is to show
that the algorithm in [7] is more widely applicable than originally presented.

We used a custom solver to findwF , which runs on the order of one to two seconds for about 2,000
triplets. While it closely resembles the form for support vector machines, it differs in two important
ways: (1) we have a primal positivity constraint onw

F , and (2) we do not have a bias term because

1This is based on the intuition that negative weights would mean that larger differences between features
could make two images more similar, which is arguably an undesirable effect.



we are using the relative relationship between our data vectors. The missing bias term means that,
in the dual optimization problem, we do not have a constraintthat ties together the dual variables
for the margin constraints. Instead, they can be updated separately using an approach similar to the
row action method described in [12], followed by a projection of the neww

F to make it positive.
Denoting the dual variables for the margin constraints byαi, we first initialize allαi to zero, then
cycle through the triplets, performing these two steps for theith triplet:

w
F ← max

{

∑T

i=1
αixi,0

}

αi ← min

{

max

{

1−〈wF ·xi〉
‖xi‖2 + αi, 0

}

, C

}

where the first max is element-wise, and the min and max in the second line forces0 ≤ αi ≤ C. We
stop iterating when all KKT conditions are met, within some precision.

3 Visual Features and Elementary Distances

The framework described above allows us to naturally combine different kinds of patch-based fea-
tures, and we will make use of shape features at two differentscales and a rudimentary color feature.
Many papers have shown the benefits of using filter-based patch features such asSIFT [3] andgeo-
metric blur [13] for shape- or texture-based object matching and recognition [14][15][13]. We chose
to use geometric blur descriptors, which were used by Zhang et al. in [11] in combination with their
KNN-SVM method to give the best previously published results on the Caltech 101 image recogni-
tion benchmark. Like SIFT, geometric blur features summarize oriented edges within a patch of the
image, but are designed to be more robust to affine transformation and differences in the periphery
of the patch. In previous work using geometric blur descriptors on the Caltech 101 dataset [13][11],
the patches used are centered at 400 or fewer edge points sampled from the image, and features are
computed on patches of a fixed scale and orientation. We follow this methodology as well, though
one could use an interest point operator to determine location, scale, and orientation from low-level
information, as is typically done with SIFT features. We usetwo different scales of geometric blur
features, the same used in separate experiments in [11]. Thelarger has a patch radius of 70 pixels,
and the smaller a patch radius of 42 pixels. Both use four oriented channels and 51 sample points,
for a total of 204 dimensions. As is done in [13], we default tonormalizing the feature vector so that
theL2 norm is equal to one.

Our color features are histograms of eight-pixel radius patches also centered at edge pixels in the
image. Any “pixels” in a patch off the edge of the image are counted in a “undefined” bin, and
we convert the HSV coordinates of the remaining points to a Cartesian space where thez direction
is value and(x, y) is the Cartesian projection of the hue/saturation dimensions. We divide the
(x, y) space into an11 × 11 grid, and make three divisions in thez direction. These were the only
parameters that we tested with the color features, choosingnot to tune the features to the Caltech
101 dataset. We normalize the bins by the total number of pixels in the patch.

Using these features, we can compute elementary patch-to-image distances. If we are computing the
distance between thejth patch in the focal image to a candidate imageI, we find the closest feature
of the same type inI using theL2 distance, and use thatL2 distance as thejth elementary patch-to-
image distance. We only compare features of the same type, solarge geometric blur features are not
compared to small geometric blur features. In our experiments we have not made use of geometric
relationships between features, but this could be incorporated in a manner similar to that in [11]
or [16].

4 Image Browsing, Retrieval, and Classification

The learned distance functions induce rankings that could naturally be the basis for a browsing
application over a closed set of images. Consider a ranking of images with respect to one focal
image, as in Figure 2. The user may see this and decide they want more sunflower images. Clicking
on the sixth image shown would then take them to the ranking with that sunflower image as the focal



image, which contains more sunflower results. In essence, wecan allow a user to navigate “image
space” by visual similarity.2

We also can make use of these distance functions to perform image retrieval: given a new imageQ,
return a listing of theN training images (or the topK) in order of similarity toQ. If given class
labels, we would want images ranked high to be in the same class asQ. While we can use theN
distance functions to compute the distance from each of the focal imagesFi toQ, these distances
are not directly comparable. This is because (1) the weight vectors for each of the focal vectors
are not constrained to share any properties other than non-negativity, (2) the number of elementary
distance measures and their potential ranges are differentfor each focal image, and (3) some learned
distance functions are simply better than others at characterizing similarity within their class. To
address this in cases where we have multi-class labels, we doa second round of training for each
focal image where we fit a logistic classifier to the binary (in-class versus out-of-class) training
labels and learned distances. Now, given a query imageQ, we can compute a probability that the
query is in the same class as each of the focal (training) images, and we can use these probabilities
to rank the training images relative to one another. The probabilities are on the same scale, and the
logistic also helps to penalize poor focal rankings.34

To classify a query image, we first run the retrieval method above to get the probabilities for each
training image. For each class, we sum the probabilities forall training images from that class, and
the query is assigned to the class with the largest total. Formally, if pj is the probability for thejth
training imageIj , andC is the set of classes, the chosen class isarg maxC

∑

j:Ij∈C pj . This can
be shown to be a relaxation of the Hamming decoding scheme forthe error-correcting output codes
in [17] in which the number of focal images is the same for eachclass.

5 Caltech101 Experiments

We test our approach on the Caltech101 dataset [18]5. This dataset has artifacts that make a few
classes easy, but many are quite difficult, and due to the important challenges it poses for scal-
able object recognition, it has up to this point been one of the de facto standard benchmarks for
multi-class image categorization/object recognition. The dataset contains images from 101 different
categories, with the number of images per category ranging from 31 to 800, with a median of about
50 images. We ignore the background class and work in a forced-choice scenario with the 101 object
categories, where a query image must be assigned to one of the101 categories.

We use the same testing methodology and mean recognition reporting described in Grauman et
al. [15]: we use varying numbers of training set sizes (givenin number of examples per class),
and in each training scenario, test with all other images in the Caltech101 dataset, except the
BACKGROUND Google class. Recognition rate per class is computed, then averaged across classes.
This normalizes the overall recognition rate so that the performance for categories with a larger num-
ber of test images does not skew the mean recognition rate.

5.1 Training data

The images are first resized to speed feature computation. The aspect ratio is maintained, but all
images are scaled down to be around200× 300. We computed features for each of these images as
described in Section 3. We used up to 400 of each type of feature (two sizes of geometric blur and
one color), for a maximum total of 1,200 features per image. For images with few edge points, we
computed fewer features so that the features were not overlyredundant. After computing elementary
distances, we rescale the distances for each focal image andfeature to have a standard deviation of
0.1.

2To see a simple demo based on the functions learned for this paper, go tohttp://www.cs.berkeley.
edu/∼afrome/caltech101/nips2006.

3You can also see retrieval rankings with probabilities at the web page.
4We experimented with abandoning the max-margin optimization and just training a logistic for each focal

image; the results were far worse, perhaps because the logistic was fittingnoise in the tails.
5Information about the data set, images, and published results can be found athttp://www.vision.

caltech.edu/Image Datasets/Caltech101/Caltech101.html
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Figure 2: The first 15 images from a ranking induced for the focal image in the upper-left corner,
trained with 15 images/category. Each image is shown with its raw distance distance, and only those
marked with (pos) or (neg) were in the learning set for this focal image. Full rankings for all experi-
mental runs can be browsed athttp://www.cs.berkeley.edu/∼afrome/caltech101/
nips2006.

For each focal image we choose a set of triplets for training,and since we are learning similarity
for the purposes image classification, we use the category labels on the images in the training set:
images that have the same label as the focal image are considered “more similar” than all images
that are out of class. Note that the training algorithm allows for a more nuanced training set where an
image could be more similar with respect to one image and lesssimilar with respect to another, but
we are not fully exploiting that in these experiments. Instead of using the full pairwise combination
of all in- and out-of-class images, we select triplets usingelementary feature distances. Thus, we
refer to all the images available for training as thetraining set and the set of images used to train
with respect to a given focal image as itslearning set. We want in our learning set those images that
are similar to the focal image according to at least one elementary distance measure. For each of
theM elementary patch distance measures, we find the topK closest images. If that group contains
both in- and out-of-class images, then we make triplets out of the full bipartite match. If allK
images are in-class, then we find the closest out-of-class image according to that distance measure
and makeK triplets with one out-of-class image and theK similar images. We do the converse if
all K images are out of class. In our experiments, we usedK = 5, and we have not yet performed
experiments to determine the effect of the choice ofK. The final set of triplets forF is the union
of the triplets chosen by theM measures. On average, we used 2,210 triplets per focal image, and
mean training time was 1-2 seconds (not including the time tocompute the features, elementary
distances, or choose the triplets). While we have to solveN of these learning problems, each can
be run completely independently, so that for a training set of 1,515 images, we can complete this
optimization on a cluster of 50 1GHz computers in about one minute.

5.2 Results

We ran a series of experiments using all features, each with adifferent number of training images per
category (either 5, 15, or 30), where we generated 10 independent random splits of the 8,677 images
from the 101 categories into training and test sets. We report the average of the mean recognition
rates across these splits as well as the standard deviations. We determined theC parameter of the
training algorithm using leave-one-out cross-validationon a small random subset of 15 images per
category, and our final results are reported using the best value ofC found (0.1). In general, however,
the method was robust to the choice ofC, with only changes of about 1% in recognition with an
order of magnitude change inC near the maximum. Figure 3 graphs these results with most of the
published results for the Caltech 101 dataset.

In the 15 training images per category setting, we also performed recognition experiments on each
of our features separately, the combination of the two shapefeatures, and the combination of two
shape features with the color features, for a total of five different feature combinations. We per-
formed another round of cross-validation to determine the Cvalue for each feature combination6.

6For big geometric blur, small geometric blur, both together, and color alone, the values were C=5, 1, 0.5,
and 50, respectively.



Figure 3: Number of training exemplars versus average recognition rate across classes (based on the
graph in [11]). Also shows results from [11], [14], [16], [15], [13], [19], [20], [21], and [18].

Recognition in the color-only experiment was the poorest at6% (0.8% standard deviation)7 The
next best performance was from the bigger geometric blur features with 49.6% (±1.9%), followed
by the smaller geometric blur features with 52.1% (±0.8%). Combining the two shape features
together, we achieved 58.8% (±0.8%), and with color and shape, reached 60.3% (±0.7%), which
is better than the best previously published performance for 15 training images on the Caltech 101
dataset [11]. Combining shape and color performed better than using the two shape features alone
for 52 of the categories, while it degraded performance for 46 of the categories, and did not change
performance in the remaining 3. In Figure 4 we show the confusion matrix for combined shape
and color using 15 training images per category. The ten worst categories starting with the worst
werecougar body, beaver, crocodile, ibis, bass, cannon, crayfish, sea horse,
crab, andcrocodile head, nine of which are animal categories.

Almost all the processing at test time is the computation of the elementary distances between the
focal images and the test image. In practice the weight vectors that we learn for our focal images are
fairly sparse, with a median of 69% of the elements set to zeroafter learning, which greatly reduces
the number of feature comparisons performed at test time. Wemeasured that our unoptimized
code takes about 300 seconds per test image.8 After comparisons are computed, we only need to
compute linear combinations and compare scores across focal images, which amounts to negligible
processing time. This is a benefit of our method compared to the KNN-SVM method of Zhang, et
al. [11], which requires the training of a multiclass SVM forevery test image, and must perform all
feature comparisons.
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Figure 4: Average confusion matrix for 15 training examplesper class, across 10 independent runs.
Shown in color using Matlab’s jet scale, shown on the right side.
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