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Abstract

In this paper we introduce and experiment with a frameworkldarning local
perceptual distance functions for visual recognition. \&&rh a distance func-
tion for each training image as a combination of elementary distances between
patch-based visual features. We apply these combineddétahce functions to
the tasks of image retrieval and classification of novel iesagOn the Caltech
101 object recognition benchmark, we achieve 60.3% meargration across
classes using 15 training images per class, which is bétarthe best published
performance by Zhang, et al.

1 Introduction

Visual categorization is a difficult task in large part duette large variation seen between images
belonging to the same class. Within one semantic class; ttaar be a large differences in shape,
color, and texture, and objects can be scaled or translatbéhvan image. For some rigid-body
objects, appearance changes greatly with viewing angk famarticulated objects, such as ani-
mals, the number of possible configurations can grow exp@ignwith the degrees of freedom.
Furthermore, there is a large number of categories in thédvib@tween which humans are able to
distinguish. One oft-cited, conservative estimate pugstthal at about 30,000 categories [1], and
this does not consider the identification problem (e.ginglaces apart).

One of the more successful tools used in visual classificati@ class of patch-based shape and
texture features that are invariant or robust to changesaite stranslation, and affine deformations.
These include the Gaussian-derivative jet descriptor8]p§IFT descriptors [3], shape contexts [4],
and geometric blur [5]. The basic outline of most discriniveapproaches which use these types of
features is as follows: (1) given a training image, selectisst of locations or “interest points”, (2)
for each location, select a patch surrounding it, oftep#dlal or rectangular in shape, (3) compute
a fixed-length feature vector from each patch, usually a sammwf edge responses or image gradi-
ents. This gives aet of fixed-length feature vectors for each training image.¥éjine a function
which, given the two sets from two images, returns a valué¢Herdistance (or similarity) between
the images. Then, (5) use distances between pairs of imagepa to a learning algorithm, for
example an SVM or nearest neighbor classifier. When giventanege, patches and features are
extracted, distances between the test image and trainiageisnare computed, and a classification
is made.



Figure 1. These exemplars are all drawn from ttwugar _f ace category of the Caltech 101
dataset, but we can see a great deal of variation. The imageedeft is a clear, color image of

a cougar face. As with mostougar _f ace exemplars, the locations and appearances of the eyes
and ears are a strong signal for class membership, as wdikasotor pattern of the face. Now
consider the grayscale center image, where the appearatieeayes has changed, the ears are no
longer visible, and hue is useless. For this image, the mgskiround the mouth and the texture of
the fur become a better signal. The image on the right shogvedbs, eyes, and mouth, but due to
articulation, the appearance of all have changed agaihapsrrepresenting a common visual sub-
category. If we were to limit ourselves to learning one maufelelative importance across these
features for all images, or even for each category, it coedhlice our ability to determine similarity
to these exemplars.

In most approaches, machine learning only comes to playejm &), after the distances or simi-
larities between training images are computed. In this waklearn the function in step (4) from
the training data. This is similar in spirit to the recent pad metric learning work in the ma-
chine learning community [6][7][8][9][10]. While these ninetds have been successfully applied to
recognizing digits, there are a couple drawbacks in apglyftese methods to the general image
classification problem. First, they would require repréisgneach image as a fixed-length feature
vector. We prefer to use sets of patch-based features,dsimgg both the strong empirical evidence
in their favor and the difficulties in capturing invariandesfixed-length feature vectors. Second,
these metric-learning algorithms learn one deformatiarttie entire space of exemplars. To gain
an intuition as to why this is a problem, consider Figure 1.

The goal of this paper is to demonstrate that in the settingsofal categorization, it can be useful
to determine the relative importance of visual features dimex scale. In this work, we attack
the problem from the other extreme, choosing to leadisi@nce function for each exemplar, where
each function gives a distance value between its trainimgenorfocal image, and any other image.
These functions can be learned from either multi-way clalksls or relative similarity information

in the training data. The distance functions are built orafoglementary distance measures between
patch-based features, and our problem is formulated sathnwl are learning a weighting over the
features in each of our training images. This approach hasiee properties: (1) the output of the
learning is a quantitative measure of the relative impaanf the parts of an image; and (2) the
framework allows us to naturally combine and select featofalifferent types.

We learn the weights using a generalization of the constchoptimization formulation proposed
by Schultz and Joachims [7] for relative comparison datandJthese local distance functions, we
address applications in image browsing, retrieval andsiflaation. In order to perform retrieval
and classification, we use an additional learning step flatsus to compare focal images to one
another, and an inference procedure based on error-dogexttput codes to make a class choice.
We show classification results on the Caltech 101 objecmition benchmark, that for some time
has been ale facto standard for multi-category classification. Our mean redamn rate on this
benchmark is 60.3% using only fifteen exemplar images pegoay, which is an improvement
over the best previously published recognition rate in [11]

2 Distance Functions and Learning Procedure

In this section we will describe the distance functions dedéarning procedure in terms of abstract
patch-based image features. Any patch-based featurasimeulsed with the framework we present,
and we will wait to address our choice of features in Section 3

If we haveN training images, we will be solvingy separate learning problems. The training image
for which a given learning problem is being solved will beereéd to as itfocal image. Each



problem is trained with a subset of the remaining trainingges, which we will refer to as the
learning set for that problem. In the rest of this section we will discus®& @uch learning problem
and focal image, but keep in mind that in the full frameworirthareN of these.

We define the distance function we are learning to be a cortibimaf elementary patch-based
distances, each of which are computed between a single patch-basedden the focal imager
and aset of features in a candidate imade essentially giving us a patch-to-image distance. Any
function between a patch feature and a set of features cauicséd to compute these elementary
distances; we will discuss our choice in Section 3. If theeed patches in the focal image, we
haveM patch-to-image distances to compute betwgesndZ, and we notate each distance in that
set asd? (Z), wherej € [1, M], and refer to the vector of these d$(Z). The image-to-image

distance functiorD that we learn is a linear combination of these elementataies. Wherev”
is a vector of weights with a weight corresponding to eacbtpéature:

M
D(F,T) =Y w}d] (T) = (w”" -d7 (1)) (1)

Our goal is to learn this weighting over the features in treafémage. We set up our algorithm to
learn from “triplets” of images, each composed of (1) theafomageF, (2) an image labeled “less
similar” to 7, and (3) an image labeled “more similar” . This formulation has been used in
other work for its flexibility [7]; it makes it possible to userelative ranking over images as training
input, but also works naturally with multi-class labels lmnsidering exemplars of the same class as
F to be “more similar” than those of another class.

To set up the learning algorithm, we consider one such triglg, 74, 7%), whereZd andZ® refer

to the dissimilar and similar images, respectively. If waldause our learned distance function for

F to rank these two images relative to one another, we ideallyldwantZ< to have a larger value

thanZs, i.e. D(F,Z%) > D(F,T*). Using the formula from the last section, this is equivalent

to (w” -d*(79)) > (w”-d7(1%)). Letx;, = d¥(Z9) — d7(Z®), the difference of the two

(<aleg1enta>1ry distance vectors for this triplet, now indexgd.bNow we can write the condition as
w’ -x;) > 0.

For a given focal image, we will construétof these triplets from our training data (we will discuss
how we choose triplets in Section 5.1). Since we will not bke &b find one set of weights that
meets this condition for all triplets, we use a maximal-nrafgrmulation where we allow slack for
triplets that do not meet the condition and try to minimize thtal amount of slack allowed. We
also increase the desired margin from zero to one, and eamst’” to have non-negative elements,
which we denote using ..

argming ¢ 3 ||w”| +OSL, &
sto: V(i) €L, T):(wr x;) >1—¢6,6 >0 2)
w” =0

We chose thd., regularization in order to be more robust to outliers and@oiSparsity is also
desirable, and ah; norm could give more sparse solutions. We do not yet havesatdiomparison
between the two within this framework.

This optimization is a generalization of that proposed bluitz and Joachims in [7] for distance
metric learning. However, our setting is different fromiteén two ways. First, their triplets do
not share the same focal image as they apply their methodoihgy one metric for all classes and
instances. Second, they arrive at their formulation bymgsg that (1) each exemplar is represented
by a single fixed-length vector, and (2)I4 distance between these vectors is used. This would
appear to preclude our use of patch features and more ititgrelsstance measures, but as we show,
this is an unnecessary restriction for the optimizationusita contribution of this paper is to show
that the algorithm in [7] is more widely applicable than anigly presented.

We used a custom solver to fird”, which runs on the order of one to two seconds for about 2,000
triplets. While it closely resembles the form for supportteeenachines, it differs in two important
ways: (1) we have a primal positivity constraint arf , and (2) we do not have a bias term because

1This is based on the intuition that negative weights would mean that largeratifies between features
could make two images more similar, which is arguably an undesirabie .effe



we are using the relative relationship between our dataow&cihe missing bias term means that,
in the dual optimization problem, we do not have a constridiat ties together the dual variables
for the margin constraints. Instead, they can be updateatatgy using an approach similar to the
row action method described in [12], followed by a projestaf the neww” to make it positive.
Denoting the dual variables for the margin constraintgxbywe first initialize alla; to zero, then
cycle through the triplets, performing these two stepsHetrith triplet:

T
w7 — max {Zizl X, O}

(W x;
«; < min {max {1|<::|2> + ai,O} ,C}

where the first max is element-wise, and the min and max ingbersl line forced < a; < C. We
stop iterating when all KKT conditions are met, within sonmegision.

3 Visual Features and Elementary Distances

The framework described above allows us to naturally comdifferent kinds of patch-based fea-
tures, and we will make use of shape features at two diffegales and a rudimentary color feature.
Many papers have shown the benefits of using filter-based pedtures such &8 FT [3] and geo-
metric blur [13] for shape- or texture-based object matching and ratiogri14][15][13]. We chose

to use geometric blur descriptors, which were used by Zhaag & [11] in combination with their
KNN-SVM method to give the best previously published resah the Caltech 101 image recogni-
tion benchmark. Like SIFT, geometric blur features sumpagaoriented edges within a patch of the
image, but are designed to be more robust to affine transfammand differences in the periphery
of the patch. In previous work using geometric blur desorgpbn the Caltech 101 dataset [13][11],
the patches used are centered at 400 or fewer edge pointtesiingm the image, and features are
computed on patches of a fixed scale and orientation. Wendhés methodology as well, though
one could use an interest point operator to determine lmtagicale, and orientation from low-level
information, as is typically done with SIFT features. We twe different scales of geometric blur
features, the same used in separate experiments in [11]lafider has a patch radius of 70 pixels,
and the smaller a patch radius of 42 pixels. Both use fountgébchannels and 51 sample points,
for a total of 204 dimensions. As is done in [13], we defaultdomalizing the feature vector so that
the L, norm is equal to one.

Our color features are histograms of eight-pixel radiustpes also centered at edge pixels in the
image. Any “pixels” in a patch off the edge of the image arerted in a “undefined” bin, and
we convert the HSV coordinates of the remaining points to @eS&n space where thedirection

is value and(z,y) is the Cartesian projection of the hue/saturation dimerssioWe divide the
(z,y) space into a1 x 11 grid, and make three divisions in thedirection. These were the only
parameters that we tested with the color features, choomt¢p tune the features to the Caltech
101 dataset. We normalize the bins by the total number ofgirehe patch.

Using these features, we can compute elementary patehége distances. If we are computing the
distance between thih patch in the focal image to a candidate imdgeve find the closest feature
of the same type ifff using thelL, distance, and use that distance as thgth elementary patch-to-
image distance. We only compare features of the same typegegeometric blur features are not
compared to small geometric blur features. In our experimere have not made use of geometric
relationships between features, but this could be incatpdrin a manner similar to that in [11]
or [16].

4 Image Browsing, Retrieval, and Classification

The learned distance functions induce rankings that coatdrally be the basis for a browsing
application over a closed set of images. Consider a rankingages with respect to one focal
image, as in Figure 2. The user may see this and decide theymeae sunflower images. Clicking
on the sixth image shown would then take them to the rankirig tvat sunflower image as the focal



image, which contains more sunflower results. In essenceawallow a user to navigate “image
space” by visual similarity.

We also can make use of these distance functions to perfoagdmetrieval: given a new image
return a listing of theV training images (or the toi) in order of similarity toQ. If given class
labels, we would want images ranked high to be in the same ael&@. While we can use th&/
distance functions to compute the distance from each ofdbal imagesF; to 9, these distances
are not directly comparable. This is because (1) the weightors for each of the focal vectors
are not constrained to share any properties other than egatimity, (2) the number of elementary
distance measures and their potential ranges are diffemesach focal image, and (3) some learned
distance functions are simply better than others at cheniairtg similarity within their class. To
address this in cases where we have multi-class labels, veesdoond round of training for each
focal image where we fit a logistic classifier to the binary-diass versus out-of-class) training
labels and learned distances. Now, given a query in@gee can compute a probability that the
guery is in the same class as each of the focal (training) @sig@nd we can use these probabilities
to rank the training images relative to one another. Thegaiiities are on the same scale, and the
logistic also helps to penalize poor focal rankidgs.

To classify a query image, we first run the retrieval methoolvalio get the probabilities for each
training image. For each class, we sum the probabilitiealfdraining images from that class, and
the query is assigned to the class with the largest totamBlly, if p; is the probability for thejth
training imageZ;, andC is the set of classes, the chosen classrgsmax; 3 ;.7 <o p;. This can
be shown to be a relaxation of the Hamming decoding schentbdarror-correcting output codes
in [17] in which the number of focal images is the same for edaks.

5 Caltech101 Experiments

We test our approach on the Caltech101 dataseP[1Bhis dataset has artifacts that make a few
classes easy, but many are quite difficult, and due to the riapiochallenges it poses for scal-
able object recognition, it has up to this point been one efdénfacto standard benchmarks for
multi-class image categorization/object recognitione ataset contains images from 101 different
categories, with the number of images per category rangorg 81 to 800, with a median of about
50 images. We ignore the background class and work in a fazheite scenario with the 101 object
categories, where a query image must be assigned to one tdtheategories.

We use the same testing methodology and mean recognitiantiregp described in Grauman et
al. [15]: we use varying numbers of training set sizes (girenumber of examples per class),
and in each training scenario, test with all other imageshia €altech101 dataset, except the
BACKGROUND_Googl e class. Recognition rate per class is computed, then awteagess classes.
This normalizes the overall recognition rate so that thégperance for categories with a larger num-
ber of test images does not skew the mean recognition rate.

5.1 Training data

The images are first resized to speed feature computatioa.a3pect ratio is maintained, but all
images are scaled down to be aro@0d x 300. We computed features for each of these images as
described in Section 3. We used up to 400 of each type of feétwo sizes of geometric blur and
one color), for a maximum total of 1,200 features per image.ifages with few edge points, we
computed fewer features so that the features were not aestiyndant. After computing elementary
distances, we rescale the distances for each focal imagieande to have a standard deviation of
0.1.

2To see a simple demo based on the functions learned for this papehigbpo/ / ww. cs. ber kel ey.
edu/ ~af rone/ cal t ech101/ ni ps2006.

3You can also see retrieval rankings with probabilities at the web page.

“We experimented with abandoning the max-margin optimization and just anivgistic for each focal
image; the results were far worse, perhaps because the logistic wasrfatsggin the tails.

SInformation about the data set, images, and published results canrodolt t p: / / www. vi si on.
cal t ech. edu/ | mage_Dat aset s/ Cal t ech101/ Cal t ech101. ht m
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Figure 2: The first 15 images from a ranking induced for thef@mage in the upper-left corner,
trained with 15 images/category. Each image is shown wétraitv distance distance, and only those
marked with (pos) or (neg) were in the learning set for thisfamage. Full rankings for all experi-
mental runs can be browsedHtt p: / / www. ¢s. ber kel ey. edu/ ~af rone/ cal t ech101/

ni ps2006.

For each focal image we choose a set of triplets for trainamg, since we are learning similarity
for the purposes image classification, we use the categbgfdan the images in the training set:
images that have the same label as the focal image are croetsitteore similar” than all images
that are out of class. Note that the training algorithm afiéar a more nuanced training set where an
image could be more similar with respect to one image andslesitar with respect to another, but
we are not fully exploiting that in these experiments. ladtef using the full pairwise combination
of all in- and out-of-class images, we select triplets ugtgmentary feature distances. Thus, we
refer to all the images available for training as thaning set and the set of images used to train
with respect to a given focal image asligarning set. We want in our learning set those images that
are similar to the focal image according to at least one ahiang distance measure. For each of
the M elementary patch distance measures, we find thé&toposest images. If that group contains
both in- and out-of-class images, then we make triplets éuhe full bipartite match. If allK
images are in-class, then we find the closest out-of-claagénaccording to that distance measure
and makeXK triplets with one out-of-class image and thesimilar images. We do the converse if
all K images are out of class. In our experiments, we used 5, and we have not yet performed
experiments to determine the effect of the choicd<ofThe final set of triplets fofF is the union

of the triplets chosen by th&/ measures. On average, we used 2,210 triplets per focal jraade
mean training time was 1-2 seconds (not including the timeommpute the features, elementary
distances, or choose the triplets). While we have to sélvef these learning problems, each can
be run completely independently, so that for a training $€t,515 images, we can complete this
optimization on a cluster of 50 1GHz computers in about oneuiai.

5.2 Results

We ran a series of experiments using all features, each wiiffeaent number of training images per
category (either 5, 15, or 30), where we generated 10 inadlpemandom splits of the 8,677 images
from the 101 categories into training and test sets. We tdperaverage of the mean recognition
rates across these splits as well as the standard deviatdmsletermined thé€' parameter of the
training algorithm using leave-one-out cross-validationa small random subset of 15 images per
category, and our final results are reported using the bast @C found (0.1). In general, however,
the method was robust to the choicef with only changes of about 1% in recognition with an
order of magnitude change @ near the maximum. Figure 3 graphs these results with mosieof t
published results for the Caltech 101 dataset.

In the 15 training images per category setting, we also pad recognition experiments on each
of our features separately, the combination of the two sliegieires, and the combination of two
shape features with the color features, for a total of fivéedéht feature combinations. We per-
formed another round of cross-validation to determine thealQe for each feature combinatfon

SFor big geometric blur, small geometric blur, both together, and coloealtwe values were C=5, 1, 0.5,
and 50, respectively.
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Figure 3: Number of training exemplars versus average retiog rate across classes (based on the
graph in [11]). Also shows results from [11], [14], [16], [1$13], [19], [20], [21], and [18].

Recognition in the color-only experiment was the poorest%t(0.8% standard deviatiohJhe
next best performance was from the bigger geometric bluufea with 49.6% £1.9%), followed

by the smaller geometric blur features with 52.1%0(8%). Combining the two shape features
together, we achieved 58.8%:(Q.8%), and with color and shape, reached 60.326.(%), which

is better than the best previously published performancé3draining images on the Caltech 101
dataset [11]. Combining shape and color performed bettar tising the two shape features alone
for 52 of the categories, while it degraded performance 6oftthe categories, and did not change
performance in the remaining 3. In Figure 4 we show the caofumatrix for combined shape
and color using 15 training images per category. The tentvwategories starting with the worst
werecougar _body, beaver, crocodil e,i bi s, bass, cannon, crayfi sh, sea_hor se,
crab, andcr ocodi | e_head, nine of which are animal categories.

Almost all the processing at test time is the computatiorhefélementary distances between the
focal images and the testimage. In practice the weight vethat we learn for our focal images are
fairly sparse, with a median of 69% of the elements set to aftew learning, which greatly reduces
the number of feature comparisons performed at test time. mé&fsured that our unoptimized
code takes about 300 seconds per test inffagéter comparisons are computed, we only need to
compute linear combinations and compare scores acrodsfuages, which amounts to negligible
processing time. This is a benefit of our method comparedadtiN-SVM method of Zhang, et
al. [11], which requires the training of a multiclass SVM &rery test image, and must perform all
feature comparisons.
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"Only seven categories did better than 33% recognition using only cflaces_easy, Leopar ds,
car si de, garfield, pi zza, snoopy, andsunfl ower. Note that allcar _si de exemplars are in
black and white.

8To further speed up comparisons, in place of an exact nearesboeighmputation, we could use approx-
imate nearest neighbor algorithms such as locality-sensitive hashipg drees.



Figure 4: Average confusion matrix for 15 training examgdes class, across 10 independent runs.
Shown in color using Matlab’s jet scale, shown on the rigtiesi
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