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Silhouette-Based Isolated Object Recognition 
through Curvature.Scale Space 

Farzin Mokhtarian 
Abstrac-A complete, fast and practical isolated object recognition sys- 

tem has been developed which is very robust with respect to scale, position 
and orientation changes of the objects as well as noise and local deforma- 
tions of shape (due to perspective projection, segmentation errors and non- 
rigid material used in some objects). The system has been tested on a wide 
variety of three-dimensional objects with different shapes and material and 
surface properties. A light-box setup is used to obtain silhouette images 
which are segmented to obtain the physical boundaries of the objects which 
are classified as either convex or concave. Convex curves are recognized 
using their four high-scale curvature extrema points. Curvature Scale Space 
(CSS) Representations are computed for concave curves. The CSS represen- 
tation is a multi-scale organization of the natural, invariant features of a 
curve (curvature zero-crossings or extrema) and useful for very reliable 
recognition of the correct model since it places no constraints on the shape 
of objects. A three-stage, coarse-to-fine matching algorithm prunes the 
search space in stage one by applying the CSS aspect ratio test. The 
maxima of contours in CSS representations of the surviving models are 
used for fast CSS matching in stage two. Finally, stage three verifies the 
best match and resolves any ambiguities by determining the distance be- 
tween the image and model curves. Transformation parameter optimization 
is then used to find the best fit of the input object to the correct model. 

Zndex Term- Object recognition system, light-box setup, boundary 
contours, curvature scale space representation, maxima of curvature zero- 
crossing contours, coarse-to-fine matching strategy, transformation pa- 
rameter optimization. 

I. INTRODUCTION 
Object representation and recognition is one of the central problems 

in computer vision. Normally, a reliable, working vision system must be 
able to I )  effectively segment the image and 2) recognize objects in the 
image using their representations. This paper describes a complete, 
working vision system [8] which segments the image effectively using a 
light-box setup and recognizes isolated objects in the image reliably 
using their curvature scale s p k  (CSS) representations [6], [7]. The 
CSS representation is based on the scale space image concept intro- 
duced in [lo] and popularized by Witkin [14]. It is an organization of 
curvature zero-crossing points on a contour at multiple scales. 

Note that an earlier CSS matching algorithm was implemented and 
tested in [6]. That algorithm was designed for both open and closed 
contour matching, made assumptions about the CSS image which were 
not always valid and was relatively slow. The CSS matching algorithm 
described in this paper in an improved, more efficient version of the 
earlier algorithm which has been designed specifically for closed con- 
tour matching. 

It is assumed that the recognition system developed here may be 
used for recognition of isolated 3D objects. In particular, it is assumed 
that objects are placed one at a time on a light-box in front of a camera 
(by a robot arm, for example) and that the task is to recognize each 
object. This particular task is believed to be interesting for the following 
reasons: 

1) Despite the constraints placed on the environment, no constraints 
have been placed on object shapes or types. Furthermore, envi- 
ronment constraints are not difficult to satisfy in many object rec- 
ognition tasks (such as in industrial settings). 

2) Every 3D object, when placed on a flat surface and viewed by a 
fixed camera, has a limited number of stable positions, each of 
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which can be modeled using a 2D contour. 
3) Even with only one object present on the light-box at a time, rec- 

ognition can become challenging due to arbitrary shapes of ob- 
jects, noise, and local deformations of shape which can be caused 
by perspective projection, segmentation errors and the non-rigid 
material used in some objects. 

4) By considering only complete contour matching, a matching al- 
gorithm has been developed which is believed to be optimal for 
that particular task. 

The existing literature on shape representation and recognition is 
quite large. Many methods are intended to be utilized on occluded 
scenes. There are also techniques designed for isolated object recogni- 
tion. Examples are Fourier descriptors [9], [12], the circular harmonic 
expansion [l] and moment invariants [2], [3], [l 11. One shortcoming of 
those techniques is that noise is not removed prior to the feature extrac- 
tion process. As a result, only the first few low-frequency coefficients 
(or low-order moments) may be reliable for matching. This results in a 
coarse shape discrimination ability but would make it difficult to distin- 
guish between objects with relatively small differences in shape. Fur- 
thermore, all techniques mentioned above compute global features of 
the input shapes and have no local support. Therefore local shape dis- 
tortions cause global changes in the computed coefficients or moments. 
Another shortcoming is the difficulty of recovering the transformation 
parameters and point correspondences on the original contours. These 
would be useful to register those contours and verify that the correct 
match has been found or to choose between two or more close matches. 

The following is the organization of the remaining sections of this 
paper. Section I1 explains the preprocessing carried out before matching 
starts. Section 111 describes a fast CSS matching algorithm. Section IV 
describes the verification steps taken after CSS matching. Section V 
gives an overall view of the implemented recognition system. Section 
VI presents the results and an evaluation of the system. Section VI1 
contains the concluding remarks. 

11. PREPROCESSING 

This section describes the computations carried out by the system 
before matching begins. It consists of image segmentation, the curva- 
ture scale space representation, and extracting maxima of curvature 
scale space contours. 

A. Image Segmentation 

The use of a light-box setup makes the segmentation of the image 
straightfoxward. The same threshold value (T = 120, with intensity Val- 
ues in the range: 0-255) was used to effectively segment all input im- 
ages including those of objects made of color transparent material (tape- 
dispenser and screw-driver). A salt-and-pepper noise removal proce- 
dure was then applied to the thresholded image. Boundary pixels were 
then detected and marked. A contour following procedure was then 
used to recover the boundary curve (see Fig. 2). 

B. The Curvature Scale Space Representation 

A curvature scale space representation is a multi-scale organiza- 
tion of the invariant geometric features (curvature zero-crossing 
points and/or extrema) of a planar curve (here, only curvature 
zero-crossings were used). The CSS representation of a planar 
curve represents that curve uniquely modulo scaling and a rigid 
motion [5 ] .  To compute it, the curve T i s  first parametrized by 
the arc length parameter U: 
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An evolved version r, of rcan then be computed. r, is defined by 

where 
r, = (-vu, 4 ,  vu, a)> 

X(u, a) =x(u)=*. g(u, a )  
Y(u, a )  =Y(uy*. g(u, a )  

where -*. is the convolution operator and g(u, a) denotes a Gaussian of 
width a [4]. It can be shown that curvature K on r, is given by [7]: 

The curvature scale space image of T i s  defined as the solution 
to K(U, 0) = 0. Note that the CSS representation is stored as a 
binary image and that zero-crossing tracking is used to speed up 
the computation of the CSS image. For examples of CSS im- 
ages, see Figs. 3(c), 3(d), 4(c), and 4(d). 

C. Extracting Maxima of Curvature Scale Space Contours 

The CSS representation computed by the procedure described 
in the previous section is a binary image. As described in the 
next section, the features of the CSS image used for matching 
are the maxima of the CSS contours. These maxima are not 

readily available and must be extracted fiom the CSS image. As 
seen in Figs. 3(c), 3(d), 4(c), and 4(d), a CSS contour is usually 
connected everywhere except possibly in a neighborhood of its 
maximum. Near the maximum of a CSS contour, the slope is 
very close to zero. . As a result., even with fine sampling of 

the input curve and the a parameter, it is unlikely that CSS contours 
will be closed at their maxima. (Furthermore, very fine sampling will 
result in a large CSS image and greater computational cost.) So the 
actual maximum of a CSS contour usually falls in the gap at the top of 
that contour. In order to find such gaps, the CSS image is scanned to 
find pairs of zero-crossing points to qualify as the endpoints of gaps. To 
quali@, a pair of zero-crossing points much be close to each other and 
neither must have a zero-crossing neighbor at the next higher scale. 
When such a pair is found, the corresponding maximum is assumed to 
be the midpoint of the line segment joining the pair. 

111. CURVATURE SCALE SPACE MATCHING 

The basic idea behind the CSS matching algorithm is to obtain a 
coarse-level match using the structural features of the input curves. 

Such a match can be found quickly and reliably since at the high 
scales of CSS images, there are relatively few features to be 
matched.The actual features used for matching are the maxima of the 
curvature zero-crossing contours. The reason for using the maxima as 
features is that they are the most significant points of zero-crossing 
contours: the CSS coordinates of a maximum convey information on 
both the location and the scale of the corresponding contour whereas 
the "body" of the contour is, in general, similar in shape to those of 
other contours. Furthermore, the maxima are isolated point features 
and therefore solving the feature correspondence problem is rela- 
tively simple. This is specially true at the high scales of the CSS im- 
age where the maxima are sparse. 

So the task of the matching algorithm is to find the correct corre- 
spondence between two sets of maxima: one from each CSS image. 
The allowed transformation fiom one set to the other set is mere hori- 
zontal translation. The translation parameter is computed when the first 
image curve CSS maximum is mapped to the first model curve CSS 

maximum and then used to map each of the remaining image curve 
CSS maxima to the model curve CSS. The corresponding model curve 
CSS maximum for each mapped image curve CSS maximum should 
then be the closest model curve CSS maximum (and the associated cost 
is the Euclidean distance between them). Many candidates may have to 
be considered since the correspondence between the fist pair of 
maxima can be made in possibly many ways. This matching problem 
can be solved using a best-jrst matching strategy E131 which will 
gradually expand a number of candidate matches in parallel (always 
selecting the best partial match) until the lowest-cost complete match is 
found. 

The CSS matching algorithm is therefore as follows: 

1) For each of the input CSS images, cany out the following: Ex- 
tract the maxima of each CSS image. Record the coordinates of 
each maximum in a feature list as it is encountered. When the al- 
gorithm ends, this list will be sorted by the scale coordinate of the 
maxima. Normalize those coordinates so that the horizontal co- 
ordinate U varies in the range [0,1]. 

2) Create a number of nodes corresponding to the possible match 
of the highest-scale maximum of the image curve CSS and each 
maximum of the model CSS which has a a-coordinate close 
(within 90%) to that of the highest model maximum. Initialize 
the cost of each node to zero. 

3) For each node created in step 2, compute a CSS shift parameter a 
using the following formula: 

U,,, = U, + a 
where U, is the horizontal coordinate of the image curve CSS 
maximum and U,,, is the horizontal coordinate of the model curve 
CSS maximum. 

4) Create two lists for each node created in step 2. The first list will 
contain the image curve CSS maxima matched within that node at 
any point during program execution and the second list will con- 
tain the corresponding model curve CSS maxima. Initialize the 
first list of each node to contain the highest-scale image curve 
CSS maximum. Initialize the second list of each node to contain the 
corresponding model curve CSS maximum determined in step 2. 

5 )  Expand each node created in step 2 one step using the procedure 
described in step 6. 

6) To expand a node, select the highest-scale, image curve CSS 
maximum (which is not in its first list) and apply that node's CSS 
shifl parameter computed in step 3 to map that maximum to the 
model CSS image. Locate the nearest model curve CSS maxi- 
mum (which is not in the node's second list). The cost of match is 
defined as the straight line distance in the model CSS image be- 
tween the two maxima If there are no more image curve CSS 
maxima left, define cost of match as the height of the highest 
model curve CSS maximum not in the node's second list. Like- 
wise, if there are no more model curve CSS maxima left, define 
cost of match as the height (after mapping) of the selected image 
curve CSS maximum. Add the match cost to the node cost. Up- 
date the two lists associated with the node. 

7) Select the lowest-cost node. If there are no more model or image 
curve CSS maxima that remain unmatched within that node, then 
return that node as the lowest-cost node. Otherwise, go to step 6 
and expand the lowest cost node. 

IV. VERIFICATION 
This section describes the verification steps carried out by the system 

after CSS matching. It consists of solving for the transformation pa- 
rameters, measuring image-model curve distances, and optimizing the 
transformation parameters. 
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A. Solving for the Transformation Parameters 

Once the best match of two CSS representations has been deter- 
mined, it is possible to obtain many pairs of points on the correspond- 
ing curves (since the correspondence between arc length values on the 
two curves is known) in order to compute an initial approximation for 
the transformation parameters. It is assumed that the transformation to 
be solved for consists of uniform scaling, rotation and translation in x 
andy. Let 

be a set of points on the model curve and let 

be the set of corresponding points on the image curve. The parameters 
of the following transformation 

must be solved for. A least-squares estimation method is used to esti- 
mate values of a, b, c, and d. Let the dissimilarity measure R, which 
measures the difference between the model curve and the transformed 
curve be defined by 

x = @,9 f i )  

= ( 4 7  w). 

xJ =a& + b w + c  & = , - b f + a w + d  (4.1) 

where (x 7 
formed image curve point (x ', , y ', 
andytJ yields 

), y 'I ) is the closest point on the model curve to trans- 
). Using (4.1) to eliminate x ', 

n = x ( a &  + b @  + c - x ;  ) ' + ( - b &  + a @  + d - y :  )*. 

Let 

P = (a, b, c, 4 

be the vector defined by the transformation parameters. The solution of 

dR 

BP 
- _  - 0  

is the least-squares estimate of those parameters. To compute that esti- 
mate, determine the partial derivatives of R with respect to each of a, b, 
c, and d and set those partial derivatives to zero. The result is a linear 
system of four equations in four unknowns which can be solved to ob- 
tain estimates for a, b, c, and d. 

B. Measuring Image-Model Curve Distances 

Once an estimate of the transformation parameters is available, it is 
possible to map the image curve to the space of the model curve. It is 
then useful to measure the image-model curve distance for two reasons: 

1) Sometimes two or more model curves are close in shape. In such 
cases, it is usefbl to map the image curve to each of those model 
curves in order to determine which model curve is closest to the 
image curve. This is accomplished by measuring image-model 
curve distances. 

2) The computation of the image-model curve distance is essential 
to transformation parameter optimization as described in Section 
N.C. 

The following procedure is used to determine image-model curve 

1) Let k = 1. Let 77 = the number of vertices on the image curve. Let 
6= 0.0. 

2) Determine the closest point on the model curve (not necessarily a 
model curve vertex) to vertex k of the image curve. To speed up 
the algorithm, consider only a small neighborhood on the model 
curve into which vertex k maps. 

distance: 

3) Let 6 =  6t distance to closest point determined in step 2. Let 
k = k + 1. If k > q, then return 6 as the total image-model curve 
distance and STOP. Otherwise, go to step 2 

C. Optimizing the Transformation Parameters 

The least-squares estimate of the transformation parameters com- 
puted in Section 1V.A. is, in general, not the optimal estimate. This is 
because the image-model point correspondences computed from the 
CSS match are not precise due to noise and local shape distortions. 
Nevertheless, it is possible to optimize those parameters using the fol- 
lowing procedure: 

1) Dp = W .  

2) Compute the least-squares estimate of the parameters using the 
technique described in Section 1V.A. and use it to map the image 
curve to the model curve. 

3) Determine a new set of corresponding points on the model curve 
as described in Section 1V.B. and compute the new image-model 
curve distance 0,. 

4) Dp - 0, < E, then STOP. 
5 )  Let Dp = 0, and go to step 2. 

In this system, it was possible to compute the optimal parameters 
with less than 1% error using at most 10 iterations of the procedure 
described above. 

Computing model representations. If the model contour is concave, the 
following procedure is followed: The CSS representation of the model 
contour is computed off-line. The aspect ratio of the model contour 
CSS image is also computed. The maxima of the CSS representation 
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are then extracted. The final representation for the model contour is 
simply the CSS coordinates of each of those maxima. If the model 
contour is convex, that contour is smoothed until only four curvature 
extrema remain on the contour. The arc length coordinates of those 
fourextrema are then recorded. The ratio of the Euclidean distance 
between the curvature maxima to the distance between the curvature 
minima is also computed for each convex contour. 

The on-line part can be divided into several stages as following: 

1) The input image is first segmented to obtain a contour from the 
image. The contour is smoothed slightly to remove noise and 
normalized so that it touches a square of size one on at least 
three sides. Curvature is then computed at each point along the 
contour. If curvature is nearly constant, the system concludes 
that the contour is circular and stops. Otherwise, if curvature is 
positive everywhere or very close to zero but possibly negative 
(this situation can be caused by noise on a convex contour), the 
system concludes that the input contour is convex and follows 
steps 7 through 10. Otherwise, the input contour is considered 
to be concave and steps 2 through 6 are followed. 

2) The CSS representation of the image curve is computed. 
3) The maxima of the image curve CSS contours are extracted. 
4) The aspect ratio of the image curve CSS is computed. Any model 

curve CSS image whose aspect ratio is close (within 10% but this 
figure can be higher) to the aspect ratio of the image curve CSS is 
accepted for step 5.  Otherwise, it is rejected. This step can also be 
implemented using a hash table. 

5) CSS matching (described in Section 111) is applied to the surviv- 
ing models. 

6) The best 20% (but this figure can be higher) of the matches in 
step 5 are selected for verification. For each model curve which is 
selected, image curve transformation parameters are computed 
using their best CSS match and used to map the image curve to 
the model curve. The image-model curve distance is then com- 
puted. The model curve with the lowest image-model curve dis- 
tance is chosen as the best matching model. Transformation pa- 
rameter optimization is then used to find the best fit of the image 
curve to the chosen model. In situations where there is little dif- 
ference between some model curves, parameter optimization can 
be used during the recognition process to find the best matching 
model. 

7) The input convex contour is smoothed until only four curvature 
extrema remain. 

8) The ratio of the Euclidean distance between the curvature 
maxima on the contour to the distance between the curvature 
minima on the contour is computed. Any convex model curve 
whose corresponding ratio is close (within 10% but this figure 
can be higher) to this ratio is accepted for step 9. Otherwise, it is 
rejected. This step can also be implemented using a hash table. 

9) The first curvature maximum on the image curve can map to ei- 
ther of the two curvature maxima on each of the surviving model 
curves. A set of image curve transformation parameters is com- 
puted for each case and applied to the image curve. The image- 
model curve distance is computed in each case. 

10) The model curve with the lowest image-model curve distance is 
chosen as the best matching model. Transformation parameter 
optimization is then used to find the best fit of the image curve to 
the chosen model. In situations where there is little difference 
between some model curves, parameter optimization can be used 
during the recognition process to find the best matching model. 

VI. RESULTS AND DISCUSSION 
The recognition system described in Section V was implemented in 

C and ran on a Silicon Graphics IRIS Crimson workstation. It was 
tested using a total of 22 model curves and 19 images. The following 
model contours were used to test the system: bottle, calculator, spray 
can lid, paper clip, fork, glue stick, key, monkey wrench (two sides), 
panda, two connector cases, screw driver, scissors, spoon, tape dis- 
penser, vase, wire cutter and two wrenches (two sides each). All model 
contours were concave except the calculator, the glue stick and the 
spray can lid. Fig. 1 shows a number of the model contours used to 
evaluate system performance. Due to the light-box setup used, the im- 
ages obtained had high contrast. As a result, thresholding was success- 
ful in properly segmenting each input image after which the bounding 
contours were recovered. Fig. 2 shows four input images and the con- 
tours recovered from those images. 

Each one of the 19 input objects was recognized correctly by the 
system in less than one second (this includes time for computation of 
image curve CSS representation). In most cases, CSS matching was 
sufficient to correctly recognize the input object. When ambiguities 
remained after CSS matching, curve distance computation success- 
fully resolved those ambiguities. The matching program is fast be- 
cause it has been designed specifically for the task of matching closed 
curves using maxima of curvature scale space contours. These 
maxima (excluding the ones corresponding to very small CSS con- 
tours) are small in number (from 2 to 6 for the curves used as input to 
our system) but have a high multi-scale discriminative power. As a 
result, it is believed that they are the ideal feature points for the 
matching task considered here. It should also be pointed out that the 
CSS matching algorithm is a best-first algorithm which finds the best 
match of two CSS representations. It can be used in a serial fashion 
to find the best match of the image curve CSS to each of the surviv- 
ing model curve CSS representations. It can also be run on parallel 
machines to find the best match to each model curve CSS representa- 
tion on a separate machine. Finally, it can be embedded in another 
best-first algorithm which will match the image curve CSS to each 
model curve CSS one step at a time and always pursue only the best 
match. The latter technique would be the fastest serial implementation of 
the algorithm. Here, the first technique was used since the algorithm 
is already quite fast. Furthermore, the coarse-to-fine matching tech- 
nique used makes efficient use of recognition power: models pass 
through recognition filters which become increasingly fine until the 
best-matching model is selected. 

The thresholds used in the tests which act as filters between the vari- 
ous stages of the system (see steps 4,6, and 8 in Section V) were drasti- 
cally changed several times. In one test, those filters were effectively 
removed. It was verified that there were no effects on the output of the 
system; the filters exist only for efficiency reasons. The system was very 
robust in each case despite the presence of noise and local deformations 
of shape due to the following: 

1) Perspective projection of actual 3D objects with depth (such as 

2) Segmentation errors near smooth physical boundaries of objects. 
3) Non-rigid material (such as cloth or soft plastic) used in some in. 

The following are examples of the matches found by the system. Ir 
each case, the image curve (drawn using a thin line) has been mappec 
to the model curve (drawn using a thick line). Fig. 3 shows the pandzt 
matched to its model. Note that the panda was made of cloth ancl 
therefore did not have a very rigid shape. The CSS images of the two 
curves are also shown. Fig. 4 shows the vase matched to the model 
vase. The local mismatch that can be observed is due to the fact that the 

the vase). 

put objects. 
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a. Panda and recovered contour 

b. Vase and recovered contour 

c .  Fork and recovered contour 

d. Tape dispenser and recovered contour 

Fig. 2. Four input images and recovered contours. 

a. 

I 

b. 

C. d 

Fig. 3. (a) Panda matched to its model, (b) &er transformation parameter opti- 
mization, (c) CSS image of image curve, (d) CSS image of model curve. 

a. b. 

C. d. 

Fig. 4. (a) The vase matched to its model, (b) after transformation parameter 
optimization, (c) CSS image of image curve, (d)CSS image ofmodel curve. 

model curve corresponds to an orthogonal projection of the vase 
whereas the image curve corresponds to its perspective projection. 
The CSS images of the two curves are also shown. The initial fit of 
the image curve to the model curve may not be very good due to 
noise or local shape deformations. Transformation parameter optimi- 
zation will guarantee the best possible global fit. 
It was discovered that, in general, if two contours had the same rough, 
coarse-level shape structure, then they would also have a close CSS 
match value. For example, this was true about the bottle and the clip 
contours. In such cases, image-model curve distance computation re- 
solved the ambiguities. It was also discovered that a single model canbe 
used to represent a class of similar looking objects. For example, the 
model screwdriver was longer than the screwdriver used as input to 
the system. 

VII. CONCLUSIONS 

This paper described a complete, fast and practical isolated object 
recognition system which used a light-box setup to obtain silhouette 
images of objects. Those images were then segmented so that the physi- 
cal boundaries of the objects could be recovered. Those boundaries 
were classified as either convex or concave. Convex curves were rec- 
ognized using their four high-scale curvature extrema points. Curvature 
scale space representations were computed for concave curves. The 
CSS representation is a multi-scale organization of the invariant, natural 
features of a planar curve (curvature zero-crossings or extrema). A 
three-stage, coarse-to-fine matching algorithm was used to find the 
correct model for each concave image curve. The first stage applied the 
CSS aspect ratio test to prune the search space. The second stage used 
the maxima of CSS contours of the surviving models to quickly find the 
best-matching ones. The last stage verified the best match and resolved 
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any ambiguities by measuring the image-model curve distance in the 
model space. Finally, transformation parameter optimization was 
used to find the best fit of the input curve to the correct model. The 
system was tested on a variety of 3D objects with different shapes 
and surface and material properties. It was found to be very robust 
with respect to position, orientation and scale changes of the objects 
as well as noise and local shape distortions. 
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Corrections 
Corrections to “Pose Estimation by Fusing Noisy 

Data of Different Dimensions” 
Y. Hel-Or and M. Werman 

In the February issue of this transactions, in the above-mentioned 
correspondence (vol. 17, no. 2, pp. 195-201) the authors made a 
number of corrections that were not included in the final printed ver- 
sion. A complete corrected version of this paper is available at URL: 
http://www.cs.huji.ac.iVpapers/IP/pose-estimation-pami.ps.gz. 

Corrections to “Parts of Visual Form: 
Computational Aspects” 

K. Siddiqi and B.B. Kimia 

In the March issue of this transactions, in the above-mentioned 
paper (vol. 17, no. 3, pp. 239-251) there were some errors made 
during the final production process. They were: 

1 .  Fig. 19 on page 245 was inverted. The outline figures should be 
on the bottom row. 

2. Reference to citation [20] in the left column on page 246 should 
be deleted. 

3. The sentence on co-circularity in the right column on page 246 
should read, “The co-circularity [31] of only two pairs, 
(T’,G*),(c’,c’), is computed, as only these are pairings of tangents 
lying on the same side of the part-line.’’ 

4. The fifth sentence in the left column on page 247 should have 
the following words added: “but pointing in opposite directions.” 

5. In the second sentence of the second paragraph on page 248, 
the word “outwards” should be inserted between the words 
‘‘deforms’’ and “by.” 

[18] B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker, “Entropy Scale- 
Space,” Visual Form: Analysis and Recognition, C .  Arcelli, ed. New 
York: Plenum Press, May 1991, pp. 333-344. 

6. Reference 18 should read: 

http://www.cs.huji.ac.iVpapers/IP/pose-estimation-pami.ps.gz

