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Abstract— We study the problem of detecting objects in
still, grayscale images. Our primary focus is development
of a learning-based approach to the problem, that makes
use of a sparse, part-based representation. A vocabulary of
distinctive object parts is automatically constructed from
a set of sample images of the object class of interest; im-
ages are then represented using parts from this vocabulary,
together with spatial relations observed among the parts.
Based on this representation, a learning algorithm is used
to automatically learn to detect instances of the object class
in new images. The approach can be applied to any object
with distinguishable parts in a relatively fixed spatial con-
figuration; it is evaluated here on difficult sets of real-world
images containing side views of cars, and is seen to success-
fully detect objects in varying conditions amidst background
clutter and mild occlusion. In evaluating object detection
approaches, several important methodological issues arise
that have not been satisfactorily addressed in previous work.
A secondary focus of this paper is to highlight these issues
and to develop rigorous evaluation standards for the object
detection problem. A critical evaluation of our approach
under the proposed standards is presented.

Keywords— Object detection, image representation, ma-
chine learning, evaluation/methodology.

I. INTRODUCTION

HE development of methods for automatic detection

of objects in images has been a central challenge in
computer vision and pattern analysis research. The main
difficulty in developing a reliable object detection approach
arises from the wide range of variations in images of objects
belonging to the same object class. Different objects be-
longing to the same category often have large variations in
appearance. In addition, the same object can appear vastly
different under different viewing conditions, such as those
resulting from changes in lighting, viewpoint and imaging
techniques [1]. A successful object detection approach must
therefore be able to represent images in a manner that ren-
ders them invariant to such intra-class variations, but at
the same time distinguishes images of the object class from
all other images.

In this paper, we present an approach for learning to
detect objects in images using a sparse, part-based repre-
sentation. Part-based representations for object detection
form the basis for a number of theories of biological vision
[2], [3], [4], [5], and have also been shown to offer advan-
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tages in computational approaches [6]. In the approach
presented here, the part-based representation is acquired
automatically from a set of sample images of the object
class of interest, thus capturing the variability in part ap-
pearances across the sample set. A classifier is then trained,
using machine learning techniques, to distinguish between
object and non-object images based on this representation;
this learning stage further captures the variation in the
part structure of object images across the training set. As
shown in our experiments, the resulting algorithm is able
to accurately detect objects in complex natural scenes.

This paper also discusses several methodological issues
that arise when evaluating object detection approaches.
For an area that is increasingly becoming an active fo-
cus of research, it is necessary to have standardized and
meaningful methods for evaluating and comparing differ-
ent approaches. We identify some important issues in this
regard that have not been satisfactorily addressed in pre-
vious work, and propose possible solutions to them.

A. Related Work

A number of different approaches to object detection
that use some form of learning have been proposed in the
past. In most such approaches, images are represented us-
ing some set of features, and a learning method is then used
to identify regions in the feature space that correspond to
the object class of interest. There has been considerable
variety in both the types of features used and the learning
methods applied; we briefly mention some of the main ap-
proaches that have been proposed, and then discuss some
recent methods that are most closely related to ours.

Image features used in learning-based approaches to ob-
ject detection have included raw pixel intensities [7], [8],
[9], features obtained via global image transformations [10],
[11], and local features such as edge fragments [12], [13],
rectangle features [14], Gabor filter based representations
[15] and wavelet features [16]. On the learning side, meth-
ods for classifying the feature space have ranged from sim-
ple nearest neighbor schemes to more complex approaches
such as neural networks [8], convolutional neural networks
[17], probabilistic methods [11], [18] and linear or higher
degree polynomial classifiers [13], [16].

In our approach, the features are designed to be object
parts that are rich in information content and are specific
to the object class of interest. A part-based representation
was used in [6], in which separate classifiers are used to de-
tect heads, arms and legs of people in an image, and a final
classifier is then used to decide whether a person is present.
However, the approach in [6] requires the object parts to be



manually defined and separated for training the individual
part classifiers. In order to build a system that is easily ex-
tensible to deal with different objects, it is important that
the part selection procedure be automated. One approach
in this direction is developed in [19], [20], in which a large
set of candidate parts is extracted from a set of sample im-
ages of the object class of interest, an explicit measure of
information content is computed for each such candidate,
and the candidates found to have the highest information
content are then used as features. This framework is ap-
pealing in that it naturally allows for parts of different sizes
and resolutions. However, the computational demands are
high; indeed, as discussed in [20], after a few parts are cho-
sen automatically, manual intervention is needed to guide
the search for further parts so as to keep the computational
costs reasonable. Our method for automatically selecting
information-rich parts builds on an efficient technique de-
scribed in [21], in which interest points are used to collect
distinctive parts. Unlike [21], however, our approach does
not assume any probabilistic model over the parts; instead,
a discriminative classifier is directly learned over the parts
that are collected. In addition, the model learned in [21] re-
lies on a small number of fixed parts, making it potentially
sensitive to large variations across images. By learning a
classifier over a large feature space, we are able to learn a
more expressive model that is robust to such variations.
In order to learn to identify regions in the feature space
corresponding to the object class of interest, we make use
of a feature-efficient learning algorithm that has been used
in similar tasks in [13], [22]. However, [13], [22] use a pixel-
based representation, whereas in our approach, images are
represented using a higher-level, more sparse representa-
tion. This has implications both in terms of detection
accuracy and robustness, and in terms of computational
efficiency: the sparse representation of the image allows us
to perform operations (such as computing relations) that
would be prohibitive in a pixel-based representation.

B. Problem Specification

We assume some object class of interest. Our goal is to
develop a system which, given an image as input, returns as
output a list of locations (and, if applicable, corresponding
scales) at which instances of the object class are detected
in the image. It is important to note that this problem is
distinct from (and more challenging than) the commonly
studied problem of simply deciding whether or not an input
image contains an instance of the object class; the latter
problem requires only a ‘yes/no’ output without necessar-
ily localizing objects, and is therefore really an instance
of an image classification problem rather than a detection
problem. Evaluation criteria for the detection problem are
discussed later in the paper.

C. Owerview of the Approach

Our approach for learning to detect objects consists
broadly of four stages; these are outlined briefly below:

(i) Vocabulary Construction

The first stage consists of building a “vocabulary” of parts
that can be used to represent objects in the target class.
This is done automatically by using an interest operator
to extract information-rich patches from sample images of
the object class of interest. Similar patches thus obtained
are grouped together and treated as a single part.
(i) Image Representation
Input images are represented in terms of parts from the
vocabulary obtained in the first stage. This requires deter-
mining which parts from the vocabulary are present in an
image; a correlation-based similarity measure is used for
this purpose. Each image is then represented as a binary
feature vector based on the vocabulary parts present in it
and the spatial relations among them.
(iii) Learning a Classifier
Given a set of training images labeled as positive (object) or
negative (non-object), each image is converted into a binary
feature vector as described above. These feature vectors are
then fed as input to a supervised learning algorithm that
learns to classify an image as a member or non-member
of the object class, with some associated confidence. As
shown in our experiments, the part-based representation
captured by the feature vectors enables a relatively simple
learning algorithm to learn a good classifier.
(iv) Detection Hypothesis Using the Learned Classifier
The final stage consists of using the learned classifier to
form a detector. We develop the notion of a classifier acti-
vation map in the single-scale case (when objects are sought
at a single, pre-specified scale), and a classifier activation
pyramid in the multi-scale case (when objects are sought at
multiple scales); these are generated by applying the classi-
fier to windows at various locations in a test image (and, in
the multi-scale case, at various scales), each window being
represented as a feature vector as above. We present two
algorithms for producing a good detection hypothesis using
the activation map or pyramid obtained from an image.
The proposed framework can be applied to any object
that consists of distinguishable parts arranged in a rel-
atively fixed spatial configuration. Our experiments are
performed on images of side views of cars; therefore, this
object class will be used as a running example throughout
the paper to illustrate the ideas and techniques involved.
The rest of the paper is organized as follows. Section II
describes each of the four stages of our approach in de-
tail. Section III presents an experimental evaluation of
the approach. In this section we first discuss several im-
portant methodological issues, including evaluation crite-
ria and performance measurement techniques, and then
present our experimental results. In Section IV we ana-
lyze the performance of individual components of our ap-
proach; this gives some insight into the results described in
Section III. Finally, Section V concludes with a summary
and possible directions for future work.

II. APPROACH

As outlined in the previous section, our approach for
learning to detect objects consists broadly of four stages.
Below we describe each of these stages in detail.
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Fig. 2. The 400 patches extracted by the Forstner interest operator from 50 sample images.

Fig. 1. Left: A sample object image used in vocabulary construction.
Center: Interest points detected by the Forstner operator. Crosses
denote intersection points; circles denote centers of circular patterns.
Right: Patches extracted around the interest points.

A. Vocabulary Construction

The first stage in the approach is to develop a vocabulary
of parts with which to represent images. To obtain an
expressive representation for the object class of interest,
we require distinctive parts that are specific to the object
class but can also capture the variation across different
instances of the object class. Our method for automatically
selecting such parts is based on the extraction of interest
points from a set of representative images of the target
object. A similar method has been used in [21].

Interest points are points in an image that have high in-
formation content in terms of the local change in signal.
They have been used in a variety of problems in computer
vision, including stereo matching [23], object recognition
and image retrieval [24]. Interest points have typically been
designed and used for properties such as rotation and view-
point invariance, which are useful in recognizing different
views of the same object, and not for the “perceptual” or
“conceptual” quality that is required for reliably detecting
different instances of an object class. However, by using
interest points in conjunction with a redundant represen-
tation that is described below, we are able to capture a
certain degree of conceptual invariance.

We apply the Forstner interest operator [25], [21] to a
set of representative images of the object class; this detects
intersection points of lines and centers of circular patterns.
Small image patches are then extracted around the inter-
est points obtained. The goal of extracting a large set of
patches from different instances of the object class is to
be able to “cover” new object instances, i.e. to be able to
represent new instances using a subset of these patches.

In our experiments, the Forstner operator was applied
to a set of 50 representative images of cars, each 100 x 40
pixels in size. Figure 1 shows an example of this process.
Patches of size 13 x 13 pixels were extracted around each
such interest point, producing a total of 400 patches from
the 50 images. These patches are shown in Figure 2.

As seen in Figure 2, several of the patches extracted by

Fig. 3. Examples of some of the “part” clusters formed after grouping
similar patches together. These form our part vocabulary.

this procedure are visually very similar to each other. To
facilitate learning, it is important to abstract over these
patches by mapping similar patches to the same feature
id (and distinct patches to different feature ids). This is
achieved via a bottom-up clustering procedure. Initially,
each patch is assigned to a separate cluster. Similar clus-
ters are then successively merged together until no similar
clusters remain. In merging clusters, the similarity between
two clusters C and C5 is measured by the average similar-
ity between their respective patches:

similarity(Cy, C3) =

1 .. .
|Cl||02\ Z Z similarity(p1, p2),

p1€C1 p2€Cs2

where the similarity between two patches is measured by
normalized correlation, allowing for small shifts of upto 2
pixels. Two clusters are merged if the similarity between
them exceeds a certain threshold (0.80 in our implementa-
tion). Using this technique, the 400 patches were grouped
into 270 “part” clusters. While several clusters contained
just one element, patches with high similarity were grouped
together. Figure 3 shows some of the larger clusters that
were formed. Each cluster as a whole is then given a single
feature id and treated as a single “conceptual” part. In this
way, by using a deliberately redundant representation that
uses several similar patches to represent a single concep-
tual part, we are able to extract a higher-level, conceptual
representation from the interest points. The importance of
the clustering procedure is demonstrated by experiments
described in Section III-D.3.

B. Image Representation

Having constructed the part vocabulary above, images
are now represented using this vocabulary. This is done
by determining which of the vocabulary parts are present
in an image, and then representing the image as a binary
feature vector based on these detected parts and the spatial
relations that are observed among them.



Fig. 4. Examples of the part detection process applied to a positive
image (top row) and a negative image (bottom row) during training.
Center images show the patches highlighted by the interest operator;
notice how this successfully captures the interesting regions in the
image. These highlighted interest patches are then matched with
vocabulary parts. In the right images, the highlighted patches are
replaced by an arbitrary member of the part cluster (if any) matched
by this detection process. These parts, together with the spatial
relations among them, form our representation of the image.

B.1 Part Detection

Since the vocabulary parts are all based on interest
points, the search for parts in an image is restricted to
interesting regions by first applying the same interest op-
erator to the image and highlighting patches around the
interest points found. For each such patch in the image,
we perform a similarity-based indexing into the part vocab-
ulary. The similarity of a vocabulary part P (which may
be a cluster containing several patches) to a highlighted
patch g is computed as

1
similarity (P, q) =

_W Z similarity(p, q),

PEP(x.q)

where 0 < A < 1, and P, 4 denotes the subset of the
part cluster P that contains the [A|P|] patches in P that
are most similar to ¢. (In our implementation, A = 0.5.)
The similarity between patches p and ¢ is measured by
normalized correlation, allowing for small shifts of upto
2 pixels. For each highlighted patch g, the most similar
vocabulary part P*(g) is given by

P*(q) = arg max similarity (P, q).

If a sufficiently similar vocabulary part is found, i.e. if
similarity(P*(q), q) exceeds a certain threshold (0.75 in our
implementation), then the patch ¢ in the image is repre-
sented by the feature id corresponding to the vocabulary
part P*(q). Figure 4 shows examples of this process.

B.2 Relations over Detected Parts

Spatial relations among the parts detected in an image
are defined in terms of the distance and direction between
each pair of parts. The distances and directions are dis-
cretized into bins: in our implementation, the distances
are defined relative to the part size and are discretized into
5 bins, while the directions are discretized into 8 differ-
ent ranges, each covering an angle of 45°. By considering
the parts in a fixed order across the image, the number
of direction bins that need to be represented is reduced to
4. This gives 20 possible relations (i.e. distance-direction
combinations) between any two parts.

The 100x 40 training images (and later, 100 x40 windows
in test images) that are converted to feature vectors have
a very small number of parts actually present in them: on
average, a positive window contains around 2-6 parts, while
a negative one contains around 0-4. Therefore, the cost of
computing relations between all pairs of detected parts is
negligible once the parts have been detected.

B.3 Feature Vector

Each 100 x 40 training image (and later, each 100 X
40 window in the test images) is represented as a feature
vector containing feature elements of two types:

(i) P,gi), denoting the ith occurrence of a part of type n
in the image (1 < n < 270 in our experiments; each n
corresponds to a particular part cluster),

(i) Rff@)(Pn1 , Pn, ), denoting the jth occurrence of relation
R,, between a part of type n; and a part of type ns in the
image (1 < m < 20 in our implementation; each m corre-
sponds to a particular distance-direction combination).
These are binary features (each indicating whether or not
a part or relation occurs in the image), each represented
by a unique identifier!. The re-representation of the image
is a list of the identifiers corresponding to the features that
are active (present) in the image.

C. Learning a Classifier

Using the above feature vector representation, a classi-
fier is trained to classify a 100 x 40 image as car or non-car.
We used a training set of 1000 labeled images (500 positive
and 500 negative), each 100 x 40 pixels in size.? The images
were acquired partly by taking still photographs of parked
cars, and partly by grabbing frames from digitized video
sequences of cars in motion. The photographs and video
sequences were all taken in the Champaign-Urbana area.
After cropping and scaling to the required size, histogram
equalization was performed on all images to reduce sensi-
tivity to changes in illumination conditions. The positive
examples contain images of different kinds of cars against a
variety of backgrounds, and include images of partially oc-
cluded cars. The negative training examples include images
of natural scenes, buildings and road views. Note that our
training set is relatively small and all images in our data set
are natural; we do not use any synthetic training images,
as has been done, for example, in [8], [13], [18].

Each of these training images is converted into a feature
vector as described in Section II-B. Note that the poten-
tial number of features in any vector is very large, since
there are 270 different types of parts that may be present,
20 possible relations between each possible pair of parts,
and several of the parts and relations may potentially be
repeated. However, in any single image, only a very small

In the implementation, a part feature of the form PT(Lz) is rep-
resented by a unique feature id which is an integer determined as
a function of n and 4. Similarly, a relation feature of the form
R%)(Pm,Pw) is assigned a unique feature id that is a function of
m, ni, no and j.

2Note that the 50 car images used for constructing the part vocab-
ulary are not part of the training set.



number of these possible features is actually active. Taking
advantage of this sparseness property, we train our classi-
fier using the Sparse Network of Winnows (SNoW) learn-
ing architecture [26], [27], which is especially well-suited for
such sparse feature representations.> SNoW learns a lin-
ear function over the feature space using a variation of the
feature-efficient Winnow learning algorithm [28]; it allows
input vectors to specify only active features, and as is the
case for Winnow, its sample complexity grows linearly with
the number of relevant features and only logarithmically
with the total number of potential features. A separate
function is learned over the common feature space for each
target class in the classification task. In our task, feature
vectors obtained from object training images are taken as
positive examples for the object class and negative exam-
ples for the non-object class, and vice-versa. Given a new
input vector, the learned function corresponding to each
class outputs an activation value, which is the dot product
of the input vector with the learned weight vector, passed
through a sigmoid function to lie between 0 and 1. Classifi-
cation then takes place via a winner-take-all decision based
on these activations (i.e. the class with the highest activa-
tion wins). The activation levels have also been shown to
provide a robust measure of confidence; we use this prop-
erty in the final stage as described in Section II-D below.
Using this learning algorithm, the representation learned
for an object class is a linear threshold function over the
feature space, i.e. over the part and relation features.

D. Detection Hypothesis Using the Learned Classifier

Having learned a classifier! that can classify 100 x 40
images as positive or negative, cars can be detected in an
image by moving a 100 x 40 window over the image and
classifying each such window as positive or negative. How-
ever, due to the invariance of the classifier to small trans-
lations of an object, several windows in the vicinity of an
object in the image will be classified as positive, giving rise
to multiple detections corresponding to a single object in
the scene. A question that arises is how the system should
be evaluated in the presence of these multiple detections.
In much previous work in object detection, multiple detec-
tions output by the system are all considered to be correct
detections (provided they satisfy the criterion for a correct
detection; this is discussed later in Section III-B). How-
ever, such a system fails both to locate the objects in the
image, and to form a correct hypothesis about the number
of object instances present in the image. Therefore in using
a classifier to perform detection, it is necessary to have an-
other processing step, above the level of the classification
output, to produce a coherent detection hypothesis.

A few studies have attempted to develop such a pro-
cessing step. A simple strategy is used in [14]: detected
windows are partitioned into disjoint (non-overlapping)

3Software for SNoW is freely available from http://L2R.cs.uiuc.
edu/ " cogcomp/.

4The SNoW parameters used to train the classifier were 1.25, 0.8,
4.0 and 1.0 respectively for the promotion and demotion rates, the
threshold and the default weight.

groups, and each group gives a single detection, located
at the centroid of the corresponding original detections.
While this may be suitable for the face detection database
used there, in general, imposing a zero-overlap constraint
on detected windows may be too strong a condition. The
system in [8] uses the very property of multiple detections
to its advantage, taking the number of detections in a small
neighborhood as a measure of the detector’s confidence in
the presence of an object within the neighborhood; if a
high confidence is obtained, the multiple detections are col-
lapsed into a single detection located at the centroid of the
original detections. Our approach also uses a confidence
measure to correctly localize an object; however, this con-
fidence is obtained directly from the classifier. In addition,
our approach offers a more systematic method for dealing
with overlaps; like [14], [8] also uses a zero-overlap strategy,
which is too restrictive for general object classes.

As a more general solution to the problem, we develop
the notion of a classifier activation map in the single-scale
case, when objects are sought at a single, pre-specified
scale, and a classifier activation pyramid in the multi-scale
case, when objects are sought at multiple scales. These
can be generated from any classifier that can produce a
real-valued activation or confidence value in addition to a
binary classification output.

D.1 Classifier Activation Map for Single-Scale Detections

In the single-scale case (where, in our case, cars are
sought at a fixed size of 100 x40 pixels), a fixed-size window
(of size 100 x 40 pixels in our case) is moved over the image
and the learned classifier is applied to each such window
(represented as a feature vector) in the image. Windows
classified as negative are mapped to a zero activation value;
windows classified as positive are mapped to the activation
value produced by the classifier. This produces a map with
high activation values at points where the classifier has a
high confidence in its positive classification. This map can
then be analyzed to find high-activation peaks, giving the
desired object locations.

We propose two algorithms for analyzing the classifier
activation map obtained from a test image. The first al-
gorithm, which we refer to as the meighborhood suppres-
sion algorithm, is based on the idea of non-maximum sup-
pression. All activations in the map start out as ‘unsup-
pressed’. At each step, the algorithm finds the highest un-
suppressed activation in the map. If this activation is the
highest among all activations (both suppressed and unsup-
pressed) within some pre-defined neighborhood, then the
location of the corresponding window is output as a de-
tection, and all activations within the neighborhood are
marked as ‘suppressed’; this means they are no longer con-
sidered as candidates for detection. If the highest unsup-
pressed activation found is lower than some (suppressed)
activation within the neighborhood, it is simply marked as
suppressed. The process is repeated until all activations
in the map are either zero or have been suppressed. The
shape and size of the neighborhood used can be chosen ap-
propriately depending on the object class and window size.



In our experiments, we used a rectangular neighborhood of
size 71 pixels (width) x 81 pixels (height), centered at the
location under consideration.

Our second algorithm for analyzing the classifier activa-
tion map obtained from a test image is referred to as the
repeated part elimination algorithm. This algorithm finds
the highest activation in the map and outputs the loca-
tion of the corresponding window as a detection. It then
removes all parts that are contained in this window, and re-
computes the activation map by re-applying the classifier
to the affected windows. This process is then repeated un-
til all activations in the map become zero. This algorithm
requires repeated application of the learned classifier, but
avoids the need to determine appropriate neighborhood pa-
rameters as in the neighborhood suppression algorithm.

In both algorithms, there is a trade-off between the num-
ber of correct detections and number of false detections. An
activation threshold is introduced in the algorithms to de-
termine where to lie on this trade-off curve; all activations
in the classifier activation map that fall below the thresh-
old are automatically set to zero. Lowering the threshold
increases the correct detections but also increases the false
positives; raising the threshold has the opposite effect. Fig-
ure 5 shows the classifier activation map generated from a
sample test image, the map after applying a threshold, and
the associated detection result (obtained using the neigh-
borhood suppression algorithm).

D.2 Classifier Activation Pyramid for Multi-Scale Detec-
tions

The approach described above for detecting objects at
a single scale can be extended to detect objects at differ-
ent scales in an image by processing the image at several
scales. This can be done by scaling the input image a num-
ber of times to form a multi-scale image pyramid, applying
the learned classifier to fixed-size windows in each image
in the pyramid, and forming a three-dimensional classifier
activation pyramid instead of the earlier two-dimensional
classifier activation map. This activation pyramid can then
be analyzed to detect objects in both location and scale
(analogous to finding peaks corresponding to object loca-
tions in the two-dimensional map). In our multi-scale ex-
periments, a test image is scaled to sizes ranging from 0.48
to 1.2 times the original size, each scale differing from the
next by a factor of 1.2. The learned classifier is applied to
100 x 40 windows in each of the scaled images, resulting in
a classifier activation pyramid with 6 scale levels.

Both the neighborhood suppression algorithm and the
repeated part elimination algorithm used to analyze activa-
tion maps in the single-scale case can be extended naturally
to analyze activation pyramids in the multi-scale case. In
this case, the algorithms output both the location and the
scale of the window corresponding to an activation flagged
as a detection. The neighborhood suppression algorithm
now uses a three-dimensional neighborhood that extends
across all scales; the neighborhood size at each scale is ob-
tained by scaling the original neighborhood size with the
image. Similarly, the repeated part elimination algorithm

now removes parts at all scales that arise from the region
of an image contained within the window corresponding
to an activation flagged as a detection. Again, an activa-
tion threshold is introduced in the algorithms to determine
where to lie in the trade-off between correct detections and
false detections.

III. EVALUATION

This section presents an experimental evaluation of the
object detection approach developed in the previous sec-
tion. The approach is evaluated both for the single-scale
case and for the multi-scale case. We start by describing
the data sets used for evaluation in Section III-A. In Sec-
tions ITI-B and III-C we discuss in detail the evaluation
criteria and performance measures we use. We emphasize
the importance of identifying and specifying a suitable eval-
uation methodology and discuss some important issues in
this regard that have not been addressed satisfactorily in
previous object detection research. Section III-D contains
our experimental results.

A. Test Sets

We collected two sets of test images, the first for the
single-scale case and the second for the multi-scale case.
We refer to these as test set I and test set 11, respectively.
Test set I consists of 170 images containing 200 cars; the
cars in this set are all roughly the same size as in the train-
ing images. Test set II consists of 108 images containing
139 cars; the cars in this set are of different sizes, ranging
from roughly 0.8 to 2 times the size of cars in the train-
ing images. The images were all taken in the Champaign-
Urbana area, and were acquired in the same manner as the
training images: partly from still images taken with a cam-
era, and partly by grabbing frames from video sequences
of cars in motion. They are of different resolutions and
include instances of partially occluded cars, cars that have
low contrast with the background, and images with highly
textured backgrounds.

B. FEwaluation Criteria

Past work on object detection has often emphasized the
need for standardized data sets for comparing different ap-
proaches. Although several studies have reported results
on common data sets, it is often not clear how the different
approaches have been evaluated on these data sets. Prob-
lems such as image classification have a naturally defined
evaluation criterion associated with them. However, in ob-
ject detection, there is no such natural criterion: correct
detections and false detections can be defined in different
ways, giving rising to different results. To ensure that the
comparison between different approaches is truly fair, it is
essential that the same evaluation criterion be used. There-
fore in addition to standard data sets for object detection,
we also need appropriate standardized evaluation criteria
to be associated with them. Here we specify in detail the
criteria we have used to evaluate our approach.®

5Both the data sets we have used and the evaluation routines are
available from http://L2R.cs.uiuc.edu/ " cogcomp/.



Fig. 5.

The second image shows the classifier activation map generated from the test image on the left; the activation at each point

corresponds to the confidence of the classifier when applied to the 100 x 40 window centered at that point. The activations in the map
have been scaled by 255 to produce the image; black corresponds to an activation of 0, white to an activation of 1. The third image shows
the map after applying a threshold of 0.9: all activations below 0.9 have been set to zero. The activations in this map have been re-scaled;
the activation range of 0.9-1 is now represented by the full black-white range. The bright white peak corresponds to the highest activation,
producing the detection result shown on the right. The method prevents the system from producing multiple detections for a single object.

In the single-scale case, for each car in the test images,
we determined manually the location of the best 100 x 40
window containing the car. For a location output by the
detector to be evaluated as a correct detection, we require
it to lie within an ellipse of a certain size centered at the
true location. In other words, if (i*,j*) denotes the cen-
ter of the window corresponding to the true location and
(i,4) denotes the center of the window corresponding to
the location output by the detector, then for (i,7) to be
evaluated as a correct detection we require it to satisfy

i—i*? =P
a2
width

<1 (1)
a}21eight 7

where Qheight, widtn determine the size of the allowed el-
lipse. We allowed the axes of the ellipse to be 25% of the
object size along each dimension, thus taking cmeight =
0.25 x 40 = 10 and awiqth = 0.25 x 100 = 25. In addition,
if two or more locations output by the detector satisfy the
above criterion for the same object, only one is considered
a correct detection; the others are counted as false posi-
tives (see Section II-D for a discussion on this). The above
criterion is more strict than the criterion used in [29], and
we have found that it corresponds more closely with human
judgement.

In the multi-scale case, we determined manually both
the location and the scale of the best window containing
each car in the test images. Since we assume a fixed ratio
between the height and width of any instance of the ob-
ject class under study, the scale of the window containing
an object can be represented simply by its width. The el-
lipse criterion of the single-scale case is extended in this
case to an ellipsoid criterion; if (i*,j*) denotes the center
of the window corresponding to the true location and w*
its width, and (¢, 7) denotes the center of the window cor-
responding to the location output by the detector and w
the width, then for (i,j,w) to be evaluated as a correct
detection we require it to satisfy
*|2 . sk |2 *|2

| +\123| +|w2w|
Qyidth Qgcale

li—i

<1, (2)
Oéﬁeight

where Oheights Qwidth, Qscale determine the size of the al-
lowed ellipsoid. In this case, we allowed the axes of the

ellipsoid to be 25% of the true object size along each di-
mension, thus taking aneight = 0.25 X A", orwigeh = 0.25 x w*

TABLE 1
SYMBOLS USED IN DEFINING PERFORMANCE MEASUREMENT
QUANTITIES, TOGETHER WITH THEIR MEANINGS.

TP Number of true positives
FP Number of false positives
nP  Total number of positives in data set
nN  Total number of negatives in data set

and Qgeale = 0.25 X w*, where h* is the height of the
window corresponding to the true location (in our case,
h* = (40/100)w*). Again, if two or more location-scale
pairs output by the detector satisfy the above criterion for
the same object, only one is considered a correct detection;
the others are counted as false positives.

C. Performance Measures

In measuring the performance of an object detection ap-
proach, the two quantities of interest are clearly the num-
ber of correct detections, which we wish to maximize, and
the number of false detections, which we wish to minimize.
Most detection algorithms include a threshold parameter
(such as the activation threshold in our case, described in
Section II-D) which can be varied to lie at different points
in the trade-off between correct and false detections. It is
then of interest to measure how well an algorithm trades
off the two quantities over a range of values of this parame-
ter. Different methods for measuring peformance measure
this trade-off in different ways, and again it is important
to identify a suitable method that captures the trade-off
correctly in the context of the object detection problem.

One method for expressing the trade-off is the receiver
operating characteristics (ROC) curve. The ROC curve
plots the true positive rate vs. the false positive rate, where

TP

T itive rate = =, 3

rue positive rate Y2 (3)
FP

Fals Siti te = — 4

alse positive rate e (4)

the symbols being explained in Table I. However, note that
in the problem of object detection, the number of negatives
in the data set, nN (required in the definition of the false
positive rate in Eq. (4) above), is not defined. The num-
ber of negative windows evaluated by a detection system



has commonly been used for this purpose. However, there
are two problems with this approach. The first is that
this measures the accuracy of the system as a classifier,
not as a detector. Since the number of negative windows
is typically very large compared to the number of posi-
tive windows, a large absolute number of false detections
appears to be small under this measure. The second and
more fundamental problem is that the number of negative
windows evaluated is not a property of either the input to
the problem or the output, but rather a property internal
to the implementation of the detection system.

When a detection system is put into practice, we are
interested in knowing how many of the objects it detects,
and how often the detections it makes are false. This trade-
off is captured more accurately by a variation of the recall-
precision curve, where

TP
= —
Reca el (5)
TP
Precision = WP (6)

The first quantity of interest, namely the proportion of
objects that are detected, is given by the recall (which is
the same as the true positive rate in Eq. (3) above). The
second quantity of interest, namely the number of false
detections relative to the total number of detections made
by the system, is given by
FP

1 — Precision = TP L FP (7)
Plotting recall vs. (1 — precision) therefore expresses the
desired trade-off.

We shall also be interested in the setting of the threshold
parameter that achieves the best trade-off between the two
quantities. This will be measured by the point of highest
F-measure, where

2 - Recall - Precision

F- = ' )
measure Recall 4+ Precision ( )

The F-measure summarizes the trade-off between recall
and precision, giving equal importance to both.

D. Ezperimental Results

We present our single-scale results in Section III-D.1 be-
low, followed by a comparison of our approach with baseline
methods in Section ITI-D.2 and a study of the contributions
of different factors in the approach in Section III-D.3. Our
multi-scale results are presented in Section ITI-D.4.

D.1 Single-Scale Results

We applied our single-scale detector, with both the
neighborhood suppression algorithm and the repeated part
elimination algorithm (see Section II-D), to test set I (de-
scribed in Section III-A), consisting of 170 images contain-
ing 200 cars. To reduce computational costs, the 100 x 40
window was moved in steps of size 5% of the window size
in each dimension, i.e. steps of 5 pixels and 2 pixels re-
spectively in the horizontal and vertical directions in our

experiments. Training over 1000 images took around 10
minutes in our implementation on a machine with two Sun
UltraSPARC-IT 296 MHz processors and 1024 MB mem-
ory. The time to test a 200 x 150 image was approximately
2.5 seconds.® In all, 147,802 test windows were evaluated
by the system, of which more than 134,333 were negative”.

Following the discussion in Section III-C, we present our
results as recall vs. (1—precision) in Figure 6. The different
points on the curves are obtained by varying the activation
threshold parameter as described in Section II-D. For com-
parison, we also calculate the ROC curves as has been done
before (using the number of negative windows evaluated by
the system as the total number of negatives); these are also
shown in Figure 6.

Tables II-I1I show some sample points from the recall-
precision curves of Figure 6.8 Again, for comparison, we
also show the false positive rate at each point correspond-
ing to the ROC curves. The repeated part elimination
algorithm allows for a higher recall than the neighborhood
suppression algorithm. However, the highest F-measure
achieved by the two algorithms is essentially the same.

Figures 7-8 show the output of our detector on some
sample test images.

D.2 Comparison with Baseline Methods

As baselines for comparison, we implemented two addi-
tional detection systems. The first is a SNoW-based de-
tector that simply uses single pixel intensities (discretized
into 16 intensity ranges) as features. Since this uses the
same learning algorithm as our system and differs only
in the representation, it provides a good basis for judging
the importance of representation in learning. The second
baseline system is a nearest-neighbor based detector that
uses the normalized correlation between test windows and
training images (in raw pixel intensity representation) as
the similarity measure. The classifier activation map for
the SNoW-based method was computed as before, using
SNoW activations. In the case of nearest-neighbor, the
classifier activation for a positively classified test window
was taken to be the correlation of the window with the
nearest training image. The results (using the neighbor-
hood suppression algorithm) are shown in Figure 9. The
poor performance of the baseline detectors is an indicator
of the difficulty level of our test set: for the COIL object
database, nearest-neighbor gives above 95% recognition ac-
curacy, while on the face detection database in [13], the
pixel-based SNoW method achieves above 94% recall.

6The improvements in computation time over [29] are mainly due
to two factors: a faster method for computing correlations, and the
observation that image patches in test images need not be compared
to vocabulary parts that are not seen during training.

"The number of negative windows was calculated by counting the
windows outside the permissible ellipses around objects (see Sec-
tion III-B). However, since only one window within the permissible
ellipse for any object would be counted as positive in evaluation, the
effective number of negatives is actually larger than this number.

8The reason for the lower numbers in Table IT compared to [29] is
the use of a more rigorous evaluation criterion; see section I1I-B.
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Fig. 6. Left: Recall-precision curves showing the performance of our single-scale car detection system with the two algorithms described in
Section II-D. Right: ROC curves showing the same results. It is important to note that the x-axis scales in the two curves are different; the
x-axis values in the ROC curve are much smaller than in the recall-precision curve. Note also that precision need not necessarily decrease
monotonically with increasing recall; this is exhibited by the inward bend on the lower left corner of the first curve (consequently, recall is
not necessarily a function of precision). See Section III-C for definitions of the different quantities and a discussion of why the recall-precision
curve is a more appropriate method for expressing object detection results than the ROC curve.

TABLE II

PERFORMANCE OF OUR SINGLE-SCALE DETECTION SYSTEM WITH THE NEIGHBORHOOD SUPPRESSION ALGORITHM (SEE SECTION II—D) ON TEST
SET I, CONTAINING 200 CARS. POINTS OF HIGHEST RECALL, HIGHEST PRECISION AND HIGHEST F-MEASURE ARE SHOWN IN BOLD.

Activation || No. of correct No. of false Recall, R | Precision, P F-measure False positive
threshold || detections, TP | detections, FP || TP/200 | TP/(TP+FP)|2-R-P/(R+ P) || rate, FP/134333
0.40 169 140 84.5 % 54.69 % 66.40 % 0.104 %
0.55 168 107 84.0 % 61.09 % 70.74 % 0.080 %
0.65 166 89 83.0 % 65.10 % 72.97 % 0.066 %
0.75 161 67 80.5 % 70.61 % 75.23 % 0.050 %
0.85 153 44 76.5 % 77.66 % 77.08 % 0.033 %
0.90 141 32 70.5 % 81.50 % 75.60 % 0.024 %
0.95 120 26 60.0 % 82.19 % 69.36 % 0.019 %
0.99 79 6 39.5 % 92.94 % 55.44 % 0.004 %
0.999 35 1 175 % 97.22 % 29.66 % 0.001 %
0.99995 8 0 4.0 % 100.0 % 7.69 % 0.0 %

TABLE III

PERFORMANCE OF OUR SINGLE-SCALE DETECTION SYSTEM WITH THE REPEATED PART ELIMINATION ALGORITHM (SEE SECTION II—D) ON TEST
SET I, CONTAINING 200 CARS. POINTS OF HIGHEST RECALL, HIGHEST PRECISION AND HIGHEST F-MEASURE ARE SHOWN IN BOLD.

Activation || No. of correct No. of false Recall, R | Precision, P F-measure False positive
threshold || detections, TP | detections, FP|| TP/200 | TP/(TP+FP)|2-R-P/(R+ P) || rate, FP/134333
0.20 183 557 91.5 % 24.73 % 38.94 % 0.415 %
0.40 177 302 88.5 % 36.95 % 52.14 % 0.225 %
0.55 166 165 83.0 % 50.15 % 62.52 % 0.123 %
0.65 162 117 81.0 % 58.06 % 67.64 % 0.087 %
0.75 156 70 78.0 % 69.03 % 73.24 % 0.052 %
0.85 145 33 72.5 % 81.46 % 76.72 % 0.025 %
0.90 132 23 66.0 % 85.16 % 74.37 % 0.017 %
0.95 114 15 57.0 % 88.37 % 69.30 % 0.011 %
0.99 78 5 39.0 % 93.98 % 55.12 % 0.004 %
0.999 35 1 175 % 97.22 % 29.66 % 0.001 %

0.99995 8 0 4.0 % 100.0 % 7.69 % 0.0 %

D.3 Contributions of Different Factors

To gain a better understanding of the different factors
contributing to the success of our approach, we conducted
experiments in which we eliminated certain steps of our

method. The results (using the neighborhood suppression

algorithm) are shown in Figure 10. In the first experiment,
we eliminated the relation features, representing the im-
ages simply by the parts present in them. This showed a
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Fig. 7. Examples of test images on which our single-scale detection system achieved perfect detection results. Results shown are with the
neighborhood suppression algorithm (see Section II-D) at the point of highest F-measure from Table II, i.e. using an activation threshold of
0.85. The windows are drawn by a separate evaluator program at the ezact locations output by the detector.

Fig. 8.

Examples of test images on which our single-scale detection system missed objects or produced false detections. As in Figure 7,

results shown are with the neighborhood suppression algorithm using an activation threshold of 0.85. The evaluator program draws a window
at each location output by the detector; locations evaluated as false positives are displayed with broken windows.

decrease in performance, suggesting that some additional
information is captured by the relations. In the second ex-
periment, we retained the relation features, but eliminated
the patch clustering step when constructing the part vo-
cabulary, assigning a different feature id to each of the 400
patches extracted from the sample object images. This re-
sulted in a significant decrease in performance, confirming
our intuition that representing similar patches as a sin-
gle conceptual-level part is important for the learning al-
gorithm to generalize well. We also tested the intuition
that a small number of conceptual parts corresponding to
frequently-seen patches should be sufficient for successful
detection by ignoring all one-patch clusters in the part vo-
cabulary. However, this decreased the performance, sug-
gesting that the small clusters also play an important role.

To further investigate the role of the patch clustering
process, we studied the effect of the degree of clustering
by varying the similarity threshold that two clusters are
required to exceed in order to be merged into a single clus-
ter (as mentioned in Section II-A, the threshold we have
used is 0.80). The results of these experiments (again with
the neighborhood suppression algorithm) are shown in Fig-
ure 11. The results indicate that the threshold we have used
(selected on the basis of visual appearance of the clusters
formed) is in fact optimal for the learning algorithm. Low-

ering the threshold leads to dissimilar patches being as-
signed to the same cluster and receiving the same feature
id; on the other hand, raising the threshold causes patches
that actually represent the same object part, but do not
cross the high cluster threshold, to be assigned to different
clusters and be treated as different parts (features). Both
lead to poorer generalization.

Another experiment we conducted was to include parts
derived from negative (non-object) images in the part
vocabulary; the intuition was that this should facilitate
more accurate representation of negative images and should
therefore improve detection results. To test this intuition,
we removed 50 negative images from the training set and
added them to the set of 50 object images that were orig-
inally used in vocabulary construction. Using all 100 of
these images to construct the part vocabulary, we then
trained the classifier on 450 positive and 450 negative im-
ages. The results, shown in Figure 12°, suggest that con-
structing the part vocabulary from only positive exam-
ples of an object class gives an adequate representation

9Note that, in order to make a fair comparison, the top (solid) curve
in Figure 12 was obtained using only the same 450 positive and 450
negative images for training as the lower (dashed) curve. For this
reason, it is different from the curve shown in previous figures (which
uses 500 positive and 500 negative training images).
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Effect of degree of clustering. Left: Lowering the clustering threshold causes dissimilar patches to be clustered together, leading to

poor generalization. Right: Raising the threshold causes patches representing the same object part to be assigned to different clusters; this

again leads to poor generalization.

Comparison with Baseline Methods

0.8} / .
0.6¢ 1
T P
g L
1 e

—— SNoW (part-based)
--= SNoW (pixel-based)
- Nearest neighbor (pixel-based)

0.2 0.4 0.6 0.8 1
1 - Precision

Fig. 9. Comparison of our detection system with baseline methods.
The poor performance of the baseline methods is an indicator of the
difficulty level of our test set. In addition, the poor performance of the
pixel-based detector that uses the same learning algorithm as ours,
and differs only in the representation, demonstrates the importance
of choosing a good representation.

for learning to detect instances of the object class.

D.4 Multi-Scale Results

Finally, we applied our multi-scale detector, with both
the neighborhood suppression algorithm and the repeated
part elimination algorithm, to test set II (described in Sec-
tion III-A), consisting of 108 images containing 139 cars.
As described in Section II-D.2; images were scaled to sizes
ranging from 0.48 to 1.2 times the original size, each scale
differing from the next by a factor of 1.2; a 100 x 40 window
was then moved over each scaled image. As in the single-
scale case, the window was moved in steps of 5 pixels in the
horizontal direction and 2 pixels in the vertical direction.

Contributions of Different Factors
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Fig. 10. Contributions of different factors in our approach to the over-
all performance. Both the relation features and the patch clustering
step are important elements in our representation. Small clusters also
have a role to play.

The time to test a 200 x 150 image was approximately 12
seconds. In all, 989,106 test windows were evaluated by
the system, of which over 971,763 were negative'?.

Our multi-scale results are shown in Figure 13 and Ta-
bles IV-V. There are two observations to be made about
these results. First, as in the single-scale case, the repeated
part elimination algorithm allows for a higher recall than
the neighborhood suppression algorithm (in this case, much
higher, albeit at a considerable loss in precision). In terms
of the highest F-measure achieved, however, the perfor-
mance of the two algorithms is again similar.

The second observation about the multi-scale results is

10The number of negative windows was calculated as in the single-
scale case, in this case using the permissible ellipsoids around objects.
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TABLE IV
PERFORMANCE OF OUR MULTI-SCALE DETECTION SYSTEM WITH THE NEIGHBORHOOD SUPPRESSION ALGORITHM (SEE SECTION II—D) ON TEST

SET IT, CONTAINING 139 CARS. POINTS OF HIGHEST RECALL, HIGHEST PRECISION AND HIGHEST F-MEASURE ARE SHOWN IN BOLD.

Activation || No. of correct No. of false Recall, R | Precision, P F-measure False positive
threshold || detections, TP | detections, FP || TP/139 | TP/(TP+FP)|2-R-P/(R+ P) || rate, FP/971763
0.65 70 215 50.36 % 24.56 % 33.02 % 0.0221 %
0.75 69 180 49.64 % 27.71 % 35.57 % 0.0185 %
0.85 65 126 46.76 % 34.03 % 39.39 % 0.0130 %
0.90 60 100 43.17 % 37.50 % 40.13 % 0.0103 %
0.95 54 56 38.85 % 49.09 % 43.37 % 0.0058 %
0.99 43 24 30.94 % 64.18 % 41.75 % 0.0025 %
0.999 18 7 12.95 % 72.0 % 21.95 % 0.0007 %
0.9999 10 2 719 % 83.33 % 13.25 % 0.0002 %
0.99999 4 0 2.88 % 100.0 % 5.59 % 0.0 %

TABLE V

PERFORMANCE OF OUR MULTI-SCALE DETECTION SYSTEM WITH THE REPEATED PART ELIMINATION ALGORITHM (SEE SECTION II-D) ON TEST
SET II, CONTAINING 139 CARS. POINTS OF HIGHEST RECALL, HIGHEST PRECISION AND HIGHEST F-MEASURE ARE SHOWN IN BOLD.

Activation || No. of correct No. of false Recall, R | Precision, P F-measure False positive
threshold || detections, TP | detections, FP || TP/139 | TP/(TP+FP)|2-R-P/(R+ P) || rate, FP/971763
0.20 112 1216 80.58 % 8.43 % 15.27 % 0.1251 %
0.40 103 739 74.10 % 12.23 % 21.00 % 0.0760 %
0.55 92 485 66.19 % 15.94 % 25.70 % 0.0499 %
0.65 87 338 62.59 % 20.47 % 30.85 % 0.0348 %
0.75 80 233 57.55 % 25.56 % 35.40 % 0.0240 %
0.85 70 149 50.36 % 31.96 % 39.11 % 0.0153 %
0.90 61 102 43.88 % 37.42 % 40.40 % 0.0105 %
0.95 55 56 39.57 % 49.55 % 44.0 % 0.0058 %
0.99 41 22 29.50 % 65.08 % 40.59 % 0.0023 %
0.999 17 5 12.23 % 77.27 % 21.12 % 0.0005 %
0.9999 10 2 719 % 83.33 % 13.25 % 0.0002 %
0.99999 4 0 2.88 % 100.0 % 5.59 % 0.0 %
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Fig. 12. Contrary to intuition, including negative images in con- Fig. 13. Performance of our multi-scale car detection system with

structing the part vocabulary does not seem to improve performance.

that they are considerably poorer than the single-scale re-
sults; the highest F-measure drops from roughly 77% in
the single-scale case to 44% in the multi-scale case. This
certainly leaves much room for improvement in approaches
for multi-scale detection. It is important to keep in mind,
however, that our results are obtained using a rigorous eval-

the two algorithms described in Section II-D.

uation criterion (see Section ITI-B); indeed, this can be seen
in Figures 14-15, which show the ouput of our multi-scale
detector on some sample test images, together with the
corresponding evaluations. In particular, our use of such
a rigorous criterion makes previous results that have been
reported for other approaches incomparable to ours.
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Fig. 14. Examples of test images on which our multi-scale detection system achieved perfect detection results. Results shown are with the
neighborhood suppression algorithm (see Section II-D) at the point of highest F-measure from Table IV, i.e. using an activation threshold of
0.95. The windows are drawn by a separate evaluator program at the ezact locations and scales output by the detector.

Fig. 15.

Examples of test images on which our multi-scale detection system missed objects or produced false detections. As in Figure 14,

results shown are with the neighborhood suppression algorithm using an activation threshold of 0.95. The evaluator program draws a window
at each location-scale pair output by the detector; location-scale pairs evaluated as false positives are displayed with broken windows. Notice
the rigorousness of the evaluation procedure (for details see Section III-B).

IV. ANALYSIS

In this section we analyze the performance of individ-
ual steps in our approach. In particular, we consider the
results of applying the Forstner interest operator, of match-
ing the image patches around interest points with vocabu-
lary parts, and of applying the learned classifier.

A. Performance of Interest Operator

The first step in applying our detection approach is to
find interest points in an image. Table VI shows the num-
ber of interest points found by the Forstner interest op-
erator in positive and negative image windows.!! In Fig-
ure 16 we show histograms over the number of interest

11 As before, in test images, all windows falling within the permis-
sible ellipses/ellipsoids around objects were counted as positive; all
others were counted as negative.

points found. Positive windows mostly have a large num-
ber of interest points; over 90% positive windows in train-
ing, and over 75% in test set I and 70% in test set II, have
5 or more interest points. Negative windows have a more
uniform distribution over the number of interest points in
the training images, but mostly have a small number of
interest points in test images; over 60% in test set I and
over 75% in test set IT have less than 5 interest points.

B. Performance of Part Matching Process

Once interest points have been found and image patches
around them highlighted, the next step is to find vocabu-
lary parts that match the highlighted patches. The result of
this step is important since it determines the actual repre-
sentation of an image window that is given to the classifier.
Table VI shows the number of vocabulary parts found in
positive and negative image windows. The proportion of
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TABLE VI
NUMBERS OF INTEREST POINTS AND VOCABULARY PARTS FOUND IN POSITIVE AND NEGATIVE IMAGE WINDOWS.

Image No. of Total no. of | Average no. of Total no. of Average no. of % interest points
windows windows || interest points | interest points || vocabulary parts | vocabulary parts matched by
in all windows per window in all windows per window vocabulary parts
Positive train 500 4138 8.28 1890 3.78 45.67 %
Positive test I 13469 94743 7.03 50608 3.76 53.42 %
Positive test II 17343 108453 6.25 51786 2.99 47.75 %
Negative train 500 3827 7.65 1056 2.11 27.59 %
Negative test I 134333 535736 3.99 177677 1.32 33.17 %
Negative test II 971763 2710149 2.79 929218 0.96 34.29 %
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Fig. 16. Histograms showing distributions over the number of interest points in positive and negative image windows.
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Fig. 17. Histograms showing distributions over the number of vocabulary parts in positive and negative image windows.

highlighted patches matched by vocabulary parts is more
or less the same across training images and both test sets;
roughly 50% for positive windows and 30% for negative
windows. Histograms over the number of vocabulary parts
are shown in Figure 17; the distributions are similar in
form to those over interest points. It is interesting to note
that the distribution over the number of vocabulary parts

in positive windows in test set I is very close to that over
the number of vocabulary parts in positive training images.

C. Performance of Learned Classifier

The performance of the classifier is shown in Table VII.
While its performance on test set I is similar to that on
the training set, its performance on test set II is drastically
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Fig. 18. Histograms showing distributions over the activation value produced by the learned classifier in the case of true positive classifications
(positive windows correctly classified as positive) and false positive classifications (negative windows incorrectly classified as positive).

TABLE VII
PERFORMANCE OF RAW CLASSIFIER ON POSITIVE AND NEGATIVE
IMAGE WINDOWS.

Image No. of | No. of correct || Classification
windows windows | classifications accuracy
Positive train 500 470 94.0 %
Positive test I 13469 12054 89.49 %
Positive test IT 17343 4935 28.46 %
Negative train 500 311 62.2 %
Negative test 1 134333 75885 56.49 %
Negative test II 971763 797432 82.06 %

different. In particular, the classification accuracy on pos-
itive windows in test set II is very low. Furthermore, as is
seen from Figure 18, positive windows in test set II that are
classified correctly are done so with lower confidence than
in test set I and the training set; the activations for true
and false positives are well-separated in test set I and the
training set, but the opposite is true for test set II. These
observations shed some light on our multi-scale results, al-
though it remains to be understood why the performance
of the classifier differs in the two cases.

V. CONCLUSION

To summarize, we have presented an approach for learn-
ing to detect objects in images using a sparse, part-based
representation. In our approach, a vocabulary of distinc-
tive object parts is automatically constructed from a set
of sample images of the object class of interest; images
are then represented using parts from this vocabulary, to-
gether with spatial relations observed among the parts.
Based on this representation, a learning algorithm is used
to automatically learn a classifier that distinguishes be-
tween members and non-members of the object class. To
detect instances of the object class in a new image, the
learned classifier is applied to several windows in the im-
age to generate what we term a classifier activation map

in the single-scale case and a classifier activation pyramid
in the multi-scale case. The activation map or pyramid is
then processed to produce a coherent detection hypothesis;
we presented two algorithms for this process.

We also addressed several methodological issues that are
important in evaluating object detection approaches. First,
the distinction between classification and detection was
highlighted, and a general method for producing a good
detector from a classifier was developed. Second, we em-
phasized the importance of specifying and standardizing
evaluation criteria in object detection experiments; this is
essential for comparisons between different approaches to
be meaningful. As a step in this direction, we formulated
rigorous, quantitative evaluation criteria for both single-
scale and multi-scale cases. Finally, we argued that recall-
precision curves are more appropriate than ROC curves for
measuring the performance of object detection approaches.

We presented a critical evaluation of our approach, for
both the single-scale case and the multi-scale case, under
the proposed evaluation standards. We evaluated it here
on images containing side views of cars; the approach is
easily extensible to other objects that have distinguishable
parts in a relatively fixed spatial configuration.

There are several avenues for further research. The
multi-scale detection problem is clearly harder than the
single-scale one; much room seems to remain for improve-
ment in this direction. One possibility is to incorporate
scale information in the features; this may help improve
the performance of the classifier. The general detection
problem may also require detecting objects at different ori-
entations; it may be possible to achieve this by learning
a number of view-based classifiers as in [18], and extend-
ing the classifier activation map or pyramid to incorporate
activation information from the different views. Computa-
tion time can be reduced by processing different scales and
orientations in parallel.

At the learning level, a natural extension is to learn to de-
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tect several object classes at once. It also remains an open
problem to formulate a learning problem that directly ad-
dresses the problem of detection rather than classification.
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