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Abstract: A general method for model-based
object recognition in occluded scenes s
presented. It is based on geometric hashing.
The method stands out for its efficiency. We
describe the general framework of the method
and illustrate its applications for various recogni-
tion problems both in 3-D and 2-D. Special
attention is given to the recognition of 3-D
objects in occluded scenes from 2-D gray scale
images. New experimental results are included
for this important case.

1. Introduction.

In this paper we present a general technique for
model-based object recognition in occluded
scenes. In model-based recognition one is fami-
liar with a certain set of objects, and the task is
to find instances of these objects in a given
scene. This task can be further complicated by
partial overlap of the objects in the scene and
possible existence of other occluding and unfam-
iliar objects. The model-based approach is suit-
able for restricted industrial environments and
most of the practical object recognition systems
are model-based (for comprehensive surveys see
[1,2], for some recent results see [3-7] ).

In a model based object recognition system
one has to address two major interrelated prob-
lems, namely, object represeniation and match-
ing. The representation should be rich enough
to allow reliable distinction between the dif-
ferent objects in the data-base, yet terse to
enable efficient marching. A major factor in a
reliable representation scheme is its ability to
deal with partial occlusion.

Work on this paper was supported by Office of Naval
Research Grants N00014-82-K-0381 and N00014-85-
K-0077 Work Unit NR 4007006, and National Science
Foundation Grant No. NSF-DCR-83-20085.

CH2664-1/88/0000/0238$01.00 © 1988 IEEE

238

We present a unified approach to the
representation and matching problems which
applies to object recognition under various
geometric transformations both in 2-D and 3-D.
The objects are represented as sets of geometric
features, such as points or lines, and their
geometric relations are encoded using minimal
sets of such features under the allowed object
transformations. This is achieved by standard
methods of Analytic Geometry invoking coordi-
nate frames based on a minimal number of
features, and representing other features by
their coordinates in the appropriate frame. Our
matching procedure is based on the geometric
hashing technique (see [4,7,8] ). It is divided
into two main steps. The first one precompiles
the representations of the data-base objects
preparing a hash-table based on these represen-
tations. This step is executed off-line on the
data-base objects and is independent of the
image scene. The second step, recognition
proper, is executed on the image scene using the
previously prepared hash-table for fast on-line
recognition. We will analyze the complexity of
this method in comparison with the alignment
technique ([6,9]) and the generalized Hough
Transform technique ([10] ).

In previous papers ([7,11]) we demon-
strated our technique for recognition of flat
objects observed from an arbitrary viewpoint.
We used the affine approximation to the viewing
transformation and presented point, line and
curve matching techniques for this case. In this
paper the focus is on the general applicability
and efficiency of our technique for diverse
recognition tasks in 2-D and 3-D using data
which is obtained either from gray scale images,
range images or by tactile sensors. Special
attention is given to the recognition of 3-D
objects from 2-D gray scale images, and new



experimental results for this

important case.

are presented

The paper is organized as follows. In Sec-
tion 2 we explain our technique for recognition
of 2-D objects which have undergone a similar-
ity transformation (rotation, translation, and
scale). This case is presented first, since it is
relatively simple, yet encompasses our basic
approach facilitating the understanding of the
general framework which is given in Section 3.
Section 3 also reviews various instances in which
our method can be applied, from the simplest
case of 2-D translation to the most general case
of projective transformation. Section 4 focuses
on recognition of 3-D objects from 2-D gray
scale images. It also includes new experimental
results for this case. Section 5 describes appli-
cation of the method for recognition of
polyhedral scenes, which applies both to range
data and tactile sensing data. Section 6 com-
pares our method with the alignment technique
and the generalized Hough Transform. Finally,
section 7 describes some future directions.

The algorithms which we describe have
been actually tested in "real life sitnations"” by
recognition of 3-D objects in composite overlap-
ping scenes (see Fig.’s 3-7 and the figures in
[7,11] for previous results).

2.
tion

Recognition under Similarity Transforma-

To demonstrate our method we first discuss flat
object recognition under a similarity transforma-
tion (rotation, translation and scale). This is the
sitnation when the viewing transformation is
approximated by a parallel projection, and the
images of both the model objects and the scene
have been taken from the same viewpoint. We
describe the model objects and the scene by sets
of interest points, which are invariant under
rotation, translation and scale. The choice of
the interest operator is not essential to our
method (see [11] for interest operators). From
now on we rephrase the model-based recogni-
tion problem to the point-set matching task,
where one is given a set of known (model)
point-sets and an observed (scene) point-set.
The recognition task can be stated as follows:

Is there a transformed (rotated, translated and
scaled) subset of some model point-set which
matches a subset of the scene point-set ?

Since a similarity transformation is
uniquely defined by the correspondence of a
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pair of points on the model with a pair of points
in the scene, one can try to match pairs of model
points against pairs of scene points to obtain
candidate similarity transformations. Each such
transformation has to be verified by matching
the transformed model against the scene ([6]).

The complexity of such a scheme is quite
unfavorable. Given m points on the model and
n points in the scene, the worst case complexity
is (mXxn)? xt, where ¢ is the complexity of veri-
fying the model against the scene. Assuming m
and n are of the same magnitude, and ¢ is at
least of magnitude m, the worst case complexity
is of order n° for recognition of a single model
in the scene. In case there is a number of
models the complexity of recognition is multi-
plied by their number.

Our aim is to reduce significantly the com-
plexity of recognition for a single model, and
also to allow simultaneous processing of all
data-base models in the scene, without trying to
match them sequentially with the scene data.
This reduction of complexity is achieved by
dividing the algorithm into two stages, so that
the model preprocessing stage can be accom-
plished without any knowledge of the scenes to be
recognized. As was mentioned in the introduc-
tion we have to address two major interrelated
problems: representation and efficient matching.

2.1. Similarity
Planar Point Sets

Invariant Representation of

Our goal is to represent a set of planar points by
few intrinsic parameters in a rotation, transla-
tion and scale invariant manner. This can be
done by defining am orthogonal coordinate
frame based on an ordered pair of points from
the set, and representing all other points by their
coordinates in this frame . Such a coordinate
frame is defined uniquely by assigning the coor-
dinates (0,0) and (1,0) to the first and second
point respectively. (In the sequel we refer to
such a pair of points as a basis pair although the
vector joining them is a unit vector which does
not span the 2-D plane. However, since it
defines uniquely the second orthogonal vector,
which completes it to a linear basis (frame)}, we
hope that our terminology will not be confus-
ing.) The unit vector of the y—axis is the
orthogonal vector of the same length pointing 90
degrees in the counter-clockwise direction.

Any similarity transformation applied to
the points of our set preserves their coordinates,



if they are represented in the same two-point
basis. Namely, if we define the images of our
two basis points under a similarity transforma-
tion as (0,0) and (1,0) respectively, the coordi-
nates of all the other points are automatically
preserved.

Such representation allows comparison of
occluded objects, since the point coordinates of
an occluded object in the scene have a partial
overlap with the coordinates of the stored
model, presuming both are represented in a
coordinate frame which is based on the same
pair of points. This dependence on a basis pair
of points may, however, preclude recognition
when one or both of the basis points are
occluded. Hence, we represent the object points
by their coordinates in all possible orthogonatl
frames, based on a pair of object points. More
specifically, the following preprocessing is
applied to each model object.

Assume a model of an object defined by m
interest points. For each ordered pair of model
points the coordinates of all other m —2 model
points are computed in the orthogonal coordi-
nate frame defined by this basis pair. Each such
coordinate (after a proper quantization) is used
as an entry to a hash-table, where the basis-pair
at which the coordinate was obtained and the
model are recorded. The complexity of this
preprocessing step is of order m3 per model.
New models added to the data-base can be pro-
cessed independently without recomputing the
hash-table. The major advantage of this some-
what redundant representation is that it will
enable efficient recognition of objects in an
occluded scene.

2.2. Matching

Given an image of a scene with partially
occluded objects, extract its interest points.
Assume n such points. Choose an arbitrary
ordered pair in the scene and compute the coor-
dinates of the scene points taking this pair as a
basis. For each such coordinate check the
appropriate entry in the hash-table, and for
every record (model, basis-pair), appearing
there, tally a vote for the model and the basis-
pair as corresponding to the ones in the scene.

If a certain record (model, basis-pair)
scores a large number of votes, take it as a
matching candidate. The uniquely defined simi-
larity transformation between the coordinate
frames of the appropriate scene and model basis
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pairs is assumed to be a candidate transforma-
tion between the model and the scene. Such a
transformation which is based on correspon-
dence of two basis pairs may not be accurate
enough due to noise, however, it will induce
correspondences of additional points. In the
next step one may find the similarity transfor-
mation giving the best least-squares match
between these additional points (see [7]).
Finally, the model edges are verified against the
scene edges. If the current pair does not score
high enough, we pass to another basis-pair in
the scene. (See Fig. 1 for a general scheme of
our procedure.)

For the algorithm to be successful it is
enough to pick any two points in the scene,
belonging to some model. In such a case the
model and the appropriate basis pair get a high
score in the voting procedure. The voting pro-
cess, per basis-pair, is linear in the number of
points in the scene. Hence, the overall recogni-
tion time is dependent on the ’density’ of model
points in the scene. Although, in the worst
case, it is O(n?), in most cases, especially when
the number of models in a scene is small, the
recognition will be much faster. To illustrate
the point let us consider the extreme and simple
case where all the n interest points in the scene
belong to one object. If the object belongs to
the model data-base, it will be recognized in the
first trial, hence the overall recognition time wiil
reduce to O(n). If the object does not belong to
the data-base, it will be rejected after all 0(n?)
trials have been completed resulting in the worst
case 0(n®) complexity.

The method we have presented assumes no
a-priori classification of the model and scene
points to reduce the number of candidates for
matching basis-pairs. In this case its worst case
complexity is O(n3). If some classification is
available, it can be easily incorporated into this
method by concentrating only on some special
basis-pairs (see [11] for a method which utilizes
concavity entrances of object boundary curves).

The method we have presented is parallel
in a straightforward manner. It has few serial
steps as can be seen from the diagram of Fig. 1.
Its major advantage is the independence between
the model processing stage (hash-table prepara-
tion) and the actual recognition stage.



3. General Framework

The algorithm that we have illustrated in the
previous section for the case of the similarity
transformation applies to many other useful
transformations which are encountered in object
recognition problems. We will state some of the
results in this section. The only difference from
one transformation to another is the number of
features (points) that have to be taken as a basis
for the coordinate frame. This, of course,
affects the complexity of the algorithm in the
different cases. Our algorithm can be summar-
ized in the following steps (see Fig. 1):

Preprocessing of model objects
For each model object :

A) Extract a set of interest features (points,
lines, or other suitable features) from the model
object. Denote their number by m.

B) Determine the minimal number of features
which can serve as a basis for a coordinate
frame, allowing expression of all other features
by transformation invariant coordinates. The
number of these features depends on the dimen-
sion of the object space and on the specific
transformation. Denote their number by k.
Now, for each k-tuple of model features com-
pute the coordinates of all the other model
features according to this basis k-tuple and hash
these coordinates into a table which stores all
the pairs (model, basis k-tuple) for every coordi-
nate.

Recognition of familiar objects in the scene

Given an image of a scene:

A) Extract its
number be n.)

interest features. (Let their

B) Choose a basis k-tuple and compute the coor-
dinates of the other features in this basis.

C) For each such coordinate check the appropri-
ate entrance in the hash-table and vote for the
pairs (model, basis k-tuple), appearing there.

D) If a certain pair scored a large number of
votes, conjecture that its model and basis k-tuple
correspond to the one chosen in the scene.

E) For a candidate k-tuple compute the transfor-
matijon giving the correspondence between it and
the scene k-tuple, compute correspondences of
additional interest features that this transforma-
tion induces, and find the best transformation
(say, in least squares sense) which produces all
these correspondences.
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F) Verify the transformed model edges against
the scene edges. If the verification fails, go
back to Step B and choose another basis k-tuple
in the scene.
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Figure 1 : The general scheme of the object recogni-

tion algorithm.

Assuming that m and » are of the same
order of magnitude, the time complexity of the
preprocessing stage is O(n**1), and the worst
case time complexity of the recognition stage is



also O(n**1) . Thus, O(n*"1) is the worst case
complexity of the algorithm. One should men-
tion however, that in most cases the recognition
stage will be much faster, and this is the actual
time which concerns us, since the preprocessing
stage has to be executed only once per data-base
and can be done off-line.

In the following subsections we give a
number of examples in which this general para-
digm applies. Almost in all the cases we discuss
point matching. Use of other features, such as
lines, can be understood by analogy.

3.1. Translation in 2-D and 3-D

The following discussion applies equally to 2-D
and 3-D. Given that the only transformation
which a body can undergo is a translation, our
technique applies with a one point basis. This
point may be viewed as the origin of the coordi-
nate frame. The worst case complexity of the
algorithm in this case is 0(n?). (In the 3-D case
we assume knowledge of 3-D data of the scene.)

3.2. Translation and rotation in 2-D and 3-D,
and similarity

To determine translation and rotation in 2-D we
need a two point basis. Since this is also the
case for the similarity transformation (see Sec.
2) we get the same complexity of performance.
Hence, the more general similarity problem is
solved at the same cost as the rigid motion prob-
lem.

Assuming range data the 3-D rigid motion
problem can be solved by finding correspon-
dence of coordinate frames, based on three
point bases. The three points define the (x,y)
plane and the unit length, and the normal to that
plane defines the z-axis. The worst case com-
plexity of our algorithm in this case is O(n*).
This is also the solution for the similarity prob-
lem in 3-D.

3.3. Affine transformation

The case of the 2-D affine transformation has
been extensively studied in [7] and [11]. This
case is especially important, since the viewing
transformation from 3-D to 2-D can be quite
successfully approximated by an affine transfor-
mation with a vanishing determinant, and, con-
strained to a plane, it becomes a non-singular 2-
D affine transformation. There a basis of three
points is required. Consequently, the worst case
complexity of the algorithm is O(n*). The effi-

242

ciency of the algorithm can be significantly
improved using special features of the shape
such as concavities (see [11]). The reader is
referred to the experimental results of [7,11] for
recognition examples of partially occluded flat
bodies in cluttered scenes under the assumption
of affine approximation to the perspective pro-
jection.

3.4. Projective transformation

Since the viewing transformation is a cen-
tral projection, we are naturally interested in the
application of our method to the projective case.
We consider the projective transformation
between two planes. It is well known ( see, for
example, [12]) that a coordinate frame for the
projective plane can be defined by four points in
general position. Hence, our method can be
applied with a four point basis, resulting in an
algorithm of O(n>) worst case complexity.

4. Recognition of 3-D Objects from 2-D Images

In the previous section we have discussed appli-
cations of our method to the case where both the
data of the object and the data of the scene have
been given in the same dimension, either 2-D or
3-D. In this section we consider the problem of
recognition of 3-D objects from 2-D photo-
graphic images. The additional problem we
have to tackle here is the reduced dimension of
the image space compared with the model space.
Thus,we do not have a one to one transforma-
tion between both spaces, which was exploited
in the examples of the previous sections. We
present a number of algorithms to tackle this
problem together with experimental results for
one of the algorithms (section 4.3), which
achieves the best performance measured by
asymptotical time complexity.

4.1. Correspondence of planes

One way to bypass the different dimension
problem is to establish plane correspondence.
Since we are trying to match a model of a 3-D
rigid body with its translated and rotated version
projected to the image plane, it is enough to
establish correspondence between a set of points
on some planar section of the object (it does not
have to be a physical planar face) and the set of
their projections in the image. Once the posi-
tion of a planar section of a rigid body has been
established, the position of the entire 3-D body
is essentially solved (see also [9]). This brings
us back to the type of problems discussed in the



previous section.

Hence, in the model preprocessing stage
we may consider all the planar sections of the
3-D object which contain three or more interest
points (for practical reasons, we will have to
consider only those sections which have ’enough’
points for recognition), constrain the bases sets
only to given planes and for each coordinate
hash the triplet (model, plane, basis). Then we
proceed exactly as described in Section 3.4 if we
are dealing with the projective case, or as in Sec-
tion 3.3 if we assume the affine approximation
to perspectivity. The triplets (model, plane,
basis) with high votes will be candidates for
correspondence of a subset of image points with
a subset of model points on a certain planar
object section. Of course, in such a case, con-
sistency of  several strong  candidates
(corresponding to different planar sections) can
be verified to extend the match.

4.2. Singular affine transformation

Assume the affine approximation to the perspec-
tive transformation. This transformation can be
represented by a 2x 3 rank 2 matrix A and a 2-D
vector b, so that a 3-D vector x is mapped into
Ax + b in the 2.D image (see [13]). We now
extend the technique of Section 3.3 to this singu-
lar case.

A set of four non coplanar points in 3-D
defines a 3-D affine basis by taking one of the
points as the origin and the vectors between this
origin and the other three points as the unit vec-
tors of the (oblique) coordinate system. Any 3-
D point is defined by its coordinate triplet in this
basis. Hence we can preprocess the model
points by their 3-D coordinates recording for
each such coordinate the models and basis 4-
tuples for which it appeared.

In the recognition stage, we pick an
ordered set of four points in general position
(without collinear triplets) in the 2-D image.
The three vectors corresponding to this point set
will be a spanning set for the image, but they
will not be linearly independent. Let e;, e,
e; , 3 be the 4 points in the image and denote
by v; the vector from ey to ¢; (i=1,2,3). Since
the vectors v; are linearly dependent, there are
three scalars, not all zero, a, B, v , so that

aV1+ﬁV2+'YV3=0.

Now, given a point e in the image, denote by v
the vector from e; to e. Since v, and v, are a
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basis for the image plane, v has a unique pair of
coordinates (£,m) in this basis. From all the
above follows that for any scalar t#0

v=(E+ta)v) + (q+1B)vy + tyvs .

Hence the point e in the image plane votes for
all the pairs (model, basis) which appear in the
hash-table for one of the coordinates
(E+ta,m+1B,ty) for all t#0. The difference
between this case and the one-to-one cases dis-
cussed in the previous section is, that instead of
voting for one coordinate, representing one bin
in the hash-table, we have to vote for all the
bins lying on a given line in the three-
dimensional hash-table. The time complexity of
the recognition stage is O(n>%m), where m is
the complexity of voting along a line in the
hash-table.

A similar technique can be applied to
extend recognition under perspective transfor-
mation from the case of plane correspondence to
finding correspondence between a 3-D object
and its 2-D image. In the projective case 5
points define a basis for the 3-D space, and 4
points define a basis for the projective plane.
The analogy to the previously discussed case is
obvious.

Although the technique which is described
here has an unfavorable complexity compared
with our other techniques, it can be significantly
sped up by choosing basis points belonging only
to some prominent features in the image, such
as corners etc.

4.3. Establishing a viewing angle with a simi-
larity transformation

In this case we assume again the parallel projec-
tion approximation to the perspective transfor-
mation (orthographic projection). Consider a
3-D object being viewed from an arbitrary
viewpoint. Two different images of the object
taken from the same viewing angle will be in a
similarity correspondence (see section 2). As
discussed in Section 2, a two point basis is
needed for recognition under a similarity
transformation. However, since the viewing
angle might be arbitrary, we have to incorporate
this information into the preprocessing step. To
allow enumeration of the viewing angle, which
is continuous in nature, we tesselate the viewing
sphere to obtain a discrete set of viewing angles
(see, for example [14]).



In the preprocessing stage of the algorithm
we hash the model point coordinates which are
computed according to the different bases and
viewing angles. Specifically, for any given
viewing angle, we compute the coordinates of
the model points in all possible two-point bases.
For each such coordinate, we record in the hash
table the triplet (model, basis, angle). Since not
all of the model interest points are visible from
any given viewing angle, one has to record table
entries only for the visible ones. (Note that for
a given two-point basis, the coordinates of the
other model points might vary as the viewing
angle changes.)

In the recognition step we pick an ordered
pair of scene points as a basis, compute the
coordinates of all other scene points in this
basis, and vote for the triplets (model, basis,
angle) for which these coordinates appeared.
The two point basis of the triplet (model, basis,
angle) with the highest score is assumed to
correspond to the basis pair which was chosen in
the scene under the proposed viewing angle.
This match will then be verified against the
scene (see Fig. 1).

Assuming m model points and n scene
points, the complexity of both the preprocessing
and recognition steps is of the same order of
magnitude as in the 2-D case (see Section 2),
namely O(m?) and O (n?) respectively. This fol-
lows from the fact that the discretization of the
viewing angle introduces only a constant factor
since the tesselation of the viewing sphere is
independent of the scene. Actually, this tessela-
tion can be quite coarse. Hence, the complexity
of this method is quite favorable compared with
other schemes.

Implementation

We chose to implement this method because of
its computational efficiency. In our experiments
we used CAD-CAM object models in attempt to
recognize their instances in composite occluded
scenes (see Fig.’s 2-5). The models that we
used (’cars’ and a ’crane’) are polyhedral. Our
methods, however, do not require polyhedral
model objects. Pairs of edge endpoints were
chosen to be (natural) bases (each having two
possible orientations). However, one can choose
any other type of interest points, e.g. intersec-
tion points of edges. The viewing sphere was
tesselated using square patches with sides of 10
degrees each (in spherical coordinates). We
found this tesselation to be sufficiently accurate.
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There is a dependence between the size of
the solid angle bins and the hash-table coordi-
nate quantization, since coarser tesselation intro-
duces more noise into the coordinate measure-
ment. If one enlarges the tesselation bins, the.
hash-table bins should be enlarged accordingly
to match the granularity of the tesselation.
Notice, that if one is interested only in correct
recognition, there is usually no need for a fine
tesselation. The viewing angle which scored
high in the recognition stage can later be used as
an initial estimate in an iterative procedure to
obtain higher localization accuracy. This pro-
cedures typically rely on extending the initial
matches, and minimizing the localization error
in the least-squares sense (see, for example
[3,7]). The above mentioned procedures enable
us to use coarse tesselation of the viewing
sphere resulting in reduction of the amount of
storage needed for the preprocessing step.

The recognition stage of the algorithm
starts with low-level processing of the scene
image. Edges are extracted using the Laplacian
of Gaussian edge detection operator. The zero-
crossing points having higher magnitudes are
linked into curves. Since our experimental
images are of (almost) polyhedral objects, line
segments were extracted from the curves. Rela-
tively short segments were eliminated, since
they usually correspond to image noise and
carry little information (see Fig.’s 2b - 5b). This
procedure was done using the software of the
SCERPO system ({3]).

The actual recognition procedure has been
executed on the processed images. We pick a
pair of points in the scene. As in the model
preprocessing stage, endpoints of straight line
segments were taken. (To obtain higher recogni-
tion accuracy one can refine the position of the
basis points by using endpoint proximity and
edge collinearity.) For the triplets (model, basis,
angle) that scored highest the appropriate
transformation between the model and the scene
was computed and verified. Usually, we got
relatively high number of votes for the correct
solutions. Because of the somewhat fine tessela-
tion of the viewing sphere that was used in the
preprocessing phase, we got clusters of high
scoring candidates all of which had the same
(model, basis), but slightly different viewing
angles. (The highest score is usually contributed
to the candidate having the viewing angle which
is the closet to the correct one.) This clustering
can further assist in determining the correct



(model, basis) that matches the image basis
together with the correct viewing angle.

Fig.’s 2c and 2d depict recognition exam-
ples of the car model of Fig. 2a in an unoc-
cluded scene. In each case the transformation
was computed using different image bases. One
can observe slight variations in the positioning
of the model due to this fact. Although in these
examples we used very limited localization
improvement procedures, one can see that the
initial matches are already quite accurate. In
Fig.’s 3-5 we show examples of recognition in

occluded composite scenes. The scenes show dif-
ferent instances of the ‘crane’ and the ‘short car’
(observe that the ‘cars’ here are different from
the one of Fig. 2). As one can see in Fig.’s 3c,
4c, and Sb, the localization of the image line
segment endpoints is quite noisy. Nontheless,
the recognition algorithm was still able to find
the correct matches. In the future we plan to
refine the scene’s interest point extraction pro-
cedure to achieve more robustness and better
accuracy. We also plan to incorporate the line
equations of prominent edges as intrinsic

features (points will be used as well).

Figure 2 : a) a gray scale image of an unoccluded ’car’; b) the remaining image edges after the 'low-
level’ processing; ¢) recognition ; d) recognition using a different *basis’ in the image.
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¢)

Figure 3 : a) a gray scale image of a ’short car’; b) a gray scale
image of two overlapping ’cars’; ¢) the scene after the ’low-level’
processing; d) recognition of the ‘cars’.
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Figure 4 : a) a gray scale image of a 'crane’; b) a gray scale image
of an occluded ’crane’; ¢) the scene after the 'low-level’ processing;
d) recognition of the ‘crane’.

b)

Figure 85 : a) a gray scale image of a ‘crane and car’ scene; b) the scene after the "low-level’ processing;

¢) recognition of the ‘car’ and the ‘crane’.
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5. Recognition of Polyhedral Objects

In the previous sections we discussed the
Geometric Hashing method for point sets. This
was done mainly to facilitate the exposition.
The method, however, applies in more general
situations. In particular its extension to lines in
2-D and 3-D and to surfaces in 3-D is straight-
forward. To illustrate the application of the
method to lines and surfaces, we discuss the
recognition of polygonal objects in 2-D under
the similarity transformation, and recognition of
polyhedral 3-D scenes.

5.1. Polygonal Objects

Consider the problem of polygonal object recog-
nition in 2-D scenes under orthographic projec-
tion. This problem attracted considerable atten-
tion and has been tackled by numerous methods.
In [15] an iterative hypotheses generation and
verification technique was applied, matching
privileged segments in the model to segments in
the scene. In [16] an interpretation tree of possi-
ble scene point and model face assignments is
built and efficiently searched using local con-
straints. The worst case complexity of the
method is, however, exponential. In [17] a
Hough transform technique is applied.

Consider the application of the Geometric
Hashing technique to the above mentioned prob-
lem. Since we are faced with a 2-D similarity
transformation, the described procedure is
analogous to the ome described in Section 2.
Here, however, by taking a single polygon edge
as the unit vector of the x—axis, we uniquely
define a 2-D orthogonal coordinate frame (see
Fig. 6).

(0’

Figure 6 : A polygon with one edge chosen as the
unit x —axis vector, defining a unique orthogonal
coordinate frame.

Hence, in the preprocessing of a polygon we
choose an edge and express all other edges in
the coordinate system based on this edge. In the
hash-table the pair (model, basis edge) is
recorded. The time complexity of this prepro-
cessing step is O(n?) where n is the number of

edges on a polygon. The recognition stage has
worst case time complexity O(n?) as well, since
it is enough to choose an edge in the scene,
express all other edges in its coordinates and
vote. So, our technique gives a quadratic worst
case algorithm for the problem.

5.2. Polyhedral scenes

Now, consider the recognition of polyhedral
objects from range or tactile data in 3-D using
their surface plane information (see also
[16,18]). Here a basis is defined by an edge of a
polyhedron and the direction of a normal to one
of the surfaces, having this edge as a boundary.
As in the 2-D case a quadratic (in the number of
edges) worst case algorithm solves a similarity
transformation. If only surface normal informa-
tion is used, two surface normals define a 3-D
basis (together with their cross product).
Although the representation of polyhedra by
their surface normals is not unique, the algo-
rithm can be applied to prune most of the wrong
matching candidates, remaining with few candi-
dates. Then, direct edge verification can be
applied. Again the big advantage of our method
is its efficiency and ability to deal with partial
occlusion.

6. Comparison with Other Methods

In this section we compare the geometric hashing
with the alignment technique and with the gen-
eralized Hough Transform. We have two reasons
to compare with these two techniques. The first
one is the relative success of these techniques in
recognition of occluded objects. The second one
is to understand the relative merits and disad-
vantages of the three techniques, since they
share some common ingredients.

6.1, Alignment

Recently considerable work was done using the,
so called, alignment method ([6,9]). This
method utilizes minimal sets of features which
suffice to establish a unique transformation
between a model and its alleged instance in the
scene. Such minimal sets on the model are
matched against sets of features in the scene.
For each match a corresponding transformation
is computed, and the set of model edges is
transformed to the scene to verify the ’candi-
date’ transformation. The time complexity of
this approach is O(N X n*m*x ), where k is the
minimal number of features needed to establish
the unique transformation, O(m) is the order of
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magnitude of model features, n the total number
of features in the scene, N the number of
models to be checked, and O(¢) the verification
time for one model, which can usually be
assumed to be of order m.

The method presented in this paper and the
alignment method usually apply the same
geometrical techniques to compute the ‘candi-
date’ transformations between a model and a
scene. For example the affine matching method
of {6] uses alignments of triplets of points, while
the method of [7] which is mentioned in Section
3.3 uses three point bases correspondence. The
basic difference between the methods is in their
algorithmic approach. While in the alignment
method an exhaustive enumeration is applied
over all the possible pairings of minimal sets of
model and image features (unless there are
some special groupings), in the geometric hash-
ing the recognition stage is significantly sped up
by using the previously prepared hash-table
which encodes the relevant information about
the model objects. Another major advantage of
the geometric hashing algorithm is its ability to
process all the model objects simultaneously.
By picking a ’correct’ basis in the scene we dis-
cover both the model it belongs to and the
appropriate transformation between this model
and the scene, while in the alignment method
one has to process the ’candidate’ models
sequentially. For example, in the affine match-
ing case, which was mentioned before, the worst
case complexity of recognition is of order Nxn’
for the alignment method, and O(n*) for
geometric hashing. Here we assume that the
number of model points, scene points and the
verification time are of order n and the number
of models in the data-base is N.

On the other hand when memory is a con-
cern, it is better to use the alignment procedure
which has almost no storage requirements,
except the image and model edge data. The
efficiency of the geometric hashing is achieved
by precompilation of the model information into
a hash-table using appropriate representations.
It gives this method the ability to determine for
a given scene minimal feature set (basis) a
corresponding feature set on one of the models
by considering only the other scene features
which ’vote’ for the correct interpretation. This
'voting’ procedure requires, however, existence
of few additional model features in the scene
image except the basis. In.the extreme case
when such additional features do not exist, the
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algorithm will try first interpretations which
scored high but are incorrect. Since these
interpretations will be rejected by the verifica-
tion step, in its fast version the algorithm will
fail to recognize the model object. Of course, in
such a case one may decide to backtrack and
check candidate solutions with less votes. Even-
tually, the correct solution will be found after an
exhaustive search resulting in the same worst
case complexity as the alignment method.

To conclude, the geometric hashing is con-
siderably more efficient than the alignment,
when the scene contains ’enough’ model features
for efficient recognition by voting ("enough’ usu-
ally means about 6-10). It is also efficient for
multiple model processing. In case the number
of model features is exceptionally small (for
example, only one basis appears in the scene),
both methods will have the same worst case
complexity.

6.2. Generalized Hough Transform

Since the geometric hashing method involves a
voting procedure it is sometimes confused with
the generalized Hough Transform (see [10] or
[19] pp. 128-131). Since not every voting pro-
cedure (c.f. presidential primaries) is a Hough
Transform, we try to explain some of the differ-
ences between the two approaches.

In the Hough Transform approach one usu-
ally describes the transformation between a
model and the scene by a set of transformation
parameters. Each such parameter has a (con-
tinuous, infinite) range of possible values which
is quantized into bins. The features of the scene
vote for these parameter bins if the appropriate
transformation data is consistent with the feature
information.

One of the differences between our scheme
and the Hough Transform is the fact that we do
not vote for some 'unpredictable’ transformation
parameters, but for representations (by bases)
of the a-priori known model objects. The hash-
table, encoding these representations, is known
in advance (before recognition), hence we can
examine the size of the bins in the table, adjust
the quantization to achieve better performance
and even introduce a weighted voting scheme
(see [8,20]) so that large bins which are not
informative will achieve a small weight, or,
even, zero weight to preclude their time con-
suming processing, while votes of small bins will
have bigger weights. Also in our procedure we



do not vote for a continuous range of transfor-
mation parameters the way it is done by the
Hough Transform, but for discrete values denot-
ing models and their representations (by basis).
In our case all the allowable transformations are
implicitly precompiled in the hash-table.

7. Future Research

The method that we have presented naturally
applies to numerocus object recognition prob-
lems. In the near future we intend to focus on a
number of issues, among them:

1) Implementation of matching procedures based
on synthesis of point and line information.

2) Practical implementation of a matching pro-
cedure under the true perspective transforma-
tion.

3) Viewing transformation invariant

representation by parts.

shape

4) Recognition of objects using parametrized
models.
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