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Abstract

We present a class of statistical models for part-based
object recognition that are explicitly parameterized ac-
cording to the degree of spatial structure they can rep-
resent. These models provide a way of relating different
spatial priors that have been used for recognizing generic
classes of objects, including joint Gaussian models and
tree-structured models. By providing explicit control over
the degree of spatial structure, our models make it pos-
sible to study the extent to which additional spatial con-
straints among parts are actually helpful in detection and
localization, and to consider the tradeoff in representational
power and computational cost. We consider these questions
for object classes that have substantial geometric structure,
such as airplanes, faces and motorbikes, using datasets em-
ployed by other researchers to facilitate evaluation. We find
that for these classes of objects, a relatively small amount of
spatial structure in the model can provide statistically indis-
tinguishable recognition performance from more powerful
models, and at a substantially lower computational cost.

1. Introduction

Since the 1970’s it has been observed that many objects
can be represented in terms of a set of parts arranged in a de-
formable configuration (e.g., [1, 2, 3, 6, 7, 8, 9, 10, 11]). In
such models, each part is generally represented by a small
template, or other local image information, and the spa-
tial relationships between parts are represented by statistical
models or spring-like connections between pairs of parts.
Recently there has been a considerable resurgence in the use
of these models for object recognition – both for detection
and localization – and in the learning of such models from
example images. Particular emphasis has been on the use of
these models for recognizing generic classes of objects that
are learned from specific examples.

The forms of spatial priors that have been used to cap-
ture geometric relationships between parts of an object dif-
fer substantially in their representational power. In general
there is a tradeoff between representational power and com-

putational complexity. On one hand, joint Gaussian mod-
els (e.g., [3, 7]) have been used to capture explicit spatial
dependencies between all pairs of parts, but detection and
localization algorithms using these models have relied on
search heuristics in order to be computationally tractable.
On the other hand, tree-structured graphical models (e.g.,
[6, 9]) have been used to efficiently detect and localize cer-
tain kinds of objects such as humans and faces, but are only
able to explicitly capture a small fraction of the spatial de-
pendencies between parts of an object. The main goal of
this paper is to improve our understanding of such tradeoffs
between representational power and computational com-
plexity for part-based recognition. We do this by introduc-
ing a parameterized family of spatial priors that vary in the
degree of spatial structure that they can capture.

We use a problem formulation similar to the one in
[3, 6, 8], where for detection or localization a single overall
problem is solved that takes into account how well individ-
ual parts match each image location and the global spatial
arrangement of parts. This approach has been referred to as
a “soft detection” strategy, because rather than first detect-
ing features and then using detected locations to find good
configurations, both problems are solved together. Often
soft detection approaches have been avoided due to compu-
tational cost. In [6] an efficient method was developed for
soft detection in the case of tree-structured models. How-
ever tree-structured models may not always be appropriate
because of their relative lack of spatial structure.

In this paper we introduce a class of graphs that we call
k-fans. Graphical models defined by k-fans provide a natu-
ral family of spatial priors for part-based recognition. The
parameter k controls both the representational power of the
models and the computational cost of doing inference with
them. At one extreme, k = 0, there is no dependence be-
tween the locations of different object parts. When k = 1
the structure is that of a star graph. For k = n − 1 (where
n is the number of parts in the model), there are depen-
dencies between all pairs of parts, as in the case of a joint
Gaussian model. Not only does this family of models al-
low us to study computational issues, but it also provides a
natural way of investigating the degree to which additional



spatial constraints improve recognition performance. Using
more powerful models (in this context, models with larger
k) does not necessarily improve classification, as it can lead
to over-fitting during learning.

For certain object classes that have been used recently
in the literature, such as motorbikes, faces and airplanes, a
relatively small amount of spatial structure provides nearly
the same recognition accuracy as is obtained using more
powerful models. The models with less spatial structure can
be used for detection and localization of these objects with
a substantially lower computational cost.

2. Statistical Models

Consider a model with n parts V = (v1, . . . , vn). The
location of the object in an image is given by a configuration
of its parts L = (l1, . . . , ln), where li is the location of the
ith part. Throughout this paper we assume that the location
of a part is given by a point in the image, li = (xi, yi).

The spatial relationships between parts in a model are
captured by a set of parameters S, while the appearance of
each part is characterized by a set of parameters A. The pair
M = (S,A) defines an object model. Using Bayes’ law the
probability that the object is at a particular location given an
image and fixed model parameters can be written as,

pM (L|I) ∝ pM (I|L)pM (L). (1)

Here pM (I|L) is the likelihood of seeing image I given a
particular configuration for the object parts and pM (L) is
the prior probability that the object would assume the spatial
configuration L. There are three fundamental problems that
can be formulated in terms of these distributions:

Detection The detection problem is to decide if the image
has an instance of the object (hypothesis w1) or if the image
is background-only (hypothesis w0). It is natural to consider
the likelihood ratio,

q =
pM (I|w1)
pM (I|w0)

. (2)

Where the numerator is usually computed by summing over
possible configurations L (see Section 3.4).

Localization Assuming the object is present in an image,
the location that is most likely its true position is one with
maximum posterior probability,

L∗ = arg max
L

pM (L|I).

Supervised learning The maximum-likelihood estimate
of the model parameters M = (S,A) given a set of T la-
beled training images {(I1, L1), . . . , (IT , LT )} is,

S∗ = arg max
S

∏
i

pM (Li),

A∗ = arg max
A

∏
i

pM (Ii|Li).

The algorithmic complexity of solving these three problems
is highly dependent on the form of the likelihood model
pM (I|L) and the spatial prior pM (L). Most approaches use
similar restrictions on the form of the likelihood. The focus
of this paper is primarily on the form of the spatial prior.

2.1. Appearance

For computational purposes the most important property
of the appearance model is that pM (I|L) factors into a prod-
uct of functions, each dependent on the location of a single
part, and one extra term which does not depend on the ob-
ject configuration. The majority of the recent work on part-
based recognition has used a similar factorization.

In our models the appearance of a part is given by a tem-
plate. Let I be the output of an oriented edge detector. For
each pixel p, I(p) is either 0 indicating that there is no edge
at p or a value in {1, . . . , r} indicating that there is an edge
in one of r possible orientations at p. We assume that the
values of each pixel in the image are independent given the
location of the object. Let Ti be the set of pixels in the ith
template. The probability that a pixel p ∈ Ti has value u is
defined by a foreground model for that part fi(p)[u]. Each
pixel in the background has value u with probability b[u].

Let w0 be the hypothesis that the object is not present in
the image. By our independence assumption we have,

pM (I|w0) =
∏
p

b[I(p)].

We say that parts i and j do not overlap if (Ti ⊕ li)∩ (Tj ⊕
lj) = ∅. Here ⊕ denotes Minkowsky addition, which is
used to translate the templates according the the locations
of the parts. For a configuration L without overlap we have,

pM (I|L) = pM (I|w0)
∏

vi∈V

gi(I, li), (3)

where

gi(I, li) =
∏
p∈T

fi(p)[I(p + li)]
b[I(p + li)]

.

Each term in gi is the ratio of the foreground and back-
ground probabilities for a pixel that is covered by template
Ti. In equation (3) the denominator of gi cancels out the
contribution of pM (I|w0) for those pixels that are under
some part. As long as we only consider configurations L
without overlapping parts the likelihood function defined
above is a true probability distribution over images (it inte-
grates to one). When parts overlap this is an approximation.
Note that for many objects the spatial prior pM (L) enforces
that parts in the model do not overlap.



2.2. Spatial Prior

The simplest approach is to assume that the part loca-
tions are independent (a naive Bayes assumption),

pM (L) =
∏

vi∈V

pM (li).

The localization problem is particularly easy with this
prior. To maximize pM (L|I) we just need to maximize
gi(I, li)pM (li) independently for each li. If there are n
parts and h locations in the image this can be done in O(nh)
time. While this model yields tractable inference and learn-
ing procedures, it encodes only weak spatial information
and is unable to accurately represent multi-part objects.

The other extreme is to make no independence assump-
tion on the locations of different parts by, for example, using
a joint Gaussian model for the spatial distribution pM (L)
as in [3]. Learning this distribution from labeled images
is easy. However it is not known how to perform infer-
ence (localization or detection) using this spatial prior ef-
ficiently, and various heuristics have been employed when
using these models. Most methods rely on hard feature de-
tection to constrain the possible locations of each part.

Spatial models between the two extremes just described
can be defined by making certain conditional independence
assumptions. These assumptions are commonly represented
using an undirected graphical model (or a Markov random
field). Let G = (V,E) be an undirected graph. The graph
is used to define a distribution for the random variables
(l1, . . . , ln) in the following way. The value for the location
of vi is independent of the values of all other nodes, condi-
tioned on the values of the neighbors of vi in the graph.

There are efficient learning and inference procedures for
models with tree-structured spatial priors, where the detec-
tion and localization problems can be solved in O(nh2)
time using dynamic programming. In many cases one can
solve these problems in O(nh) time – the same asymptotic
time as the naive Bayes case where there are no dependen-
cies between part locations (see [6]).

3. k-fans

Now we consider a class of spatial priors that lie between
the two extremes of a naive Bayes assumption and a full
joint Gaussian model. Our goal is to find models with per-
formance comparable to the joint Gaussian but that support
fast procedures for exact (discrete) inference and learning.
We start by considering a restricted form of tree model and
then extend that model. A star graph is a tree with a central
node that is connected to all other nodes. Let G = (V,E)
be a star graph with central node vr. Graphical models with
a star structure have a particularly simple interpretation in
terms of conditional distributions. The values of random

1-fan 2-fan 3-fan

Figure 1. Some k-fans on 6 nodes. The reference nodes are shown
in black while the regular nodes are shown in gray.

variables associated with nodes vi �= vr are independent
when conditioned on the value of vr. This leads to the fol-
lowing factorization of the prior distribution,

pM (L) = pM (lr)
∏

vi �=vr

pM (li|lr).

We can think of the central node vr as a reference part. The
position of other parts in the model are evaluated relative to
the position of this reference part.

More generally let R ⊆ V be a set of reference parts,
and R = V − R be the remaining parts in a model. The set
R can be used to define a graph, which we call a k-fan for
k = |R|. This graph consists of a complete subgraph over
the nodes in R, and each node in R is connected to every
node in R (and nothing else). Recall that in a clique there is
an edge connecting each pair of nodes. A k-fan can be seen
as a collection of cliques of size k + 1 glued together along
a common clique of size k. The k nodes in the common
clique are the reference parts R. Some examples of k-fans
on 6 nodes are shown in Figure 1.

We claim that k-fans form an important class of graphi-
cal models for spatial priors. These are exactly the models
where the locations of the non-reference parts are condition-
ally independent given the locations of the reference parts.
Let R = {v1, . . . , vk} be the reference parts in a k-fan. We
denote by lR = (l1, . . . , lk) a particular configuration of the
reference parts. The spatial prior defined by a k-fan can be
written in conditional form as,

pM (L) = pM (lR)
∏

vi∈R

pM (li|lR). (4)

The set of k-fans on n nodes form a family of graphs that lie
between the completely disconnected graph (k = 0) and the
complete graph (k = n − 1). In general both the localiza-
tion and detection problems for models with spatial priors
based on k-fans can be solved in O(nhk+1) time, where as
before n is the number of parts in the model and h is the
number of locations in the image. Thus k controls the com-
putational complexity of inference with these models. With
the additional assumption that pM (L) is Gaussian we can
use distance transforms and convolutions to solve the infer-
ence problems in O(nhk), as described below. In practice



the running time can be further improved using conservative
pruning heuristics.

For learning k-fan models it will be useful to write down
the spatial prior in terms of marginal distributions,

pM (L) =

∏
vi∈R pM (li, lR)

pM (lR)n−(k+1)
. (5)

The numerator is the product of marginal probabilities for
the n−k maximal cliques and the denominator involves the
marginal probability for the nodes shared by all maximal
cliques (the so-called separator set which in this case is R).
This is a special form of the factorization for a triangulated
graph, which is the ratio of a product over maximal cliques
and a product over separators.

3.1. Geometric Interpretation

There is a natural connection between k-fan models and
object recognition using geometric invariants. Each maxi-
mal clique in a k-fan consists of exactly k + 1 parts, and
the location of these parts can be used to define shape con-
straints that are invariant to certain geometric transforma-
tions (see [4]). The number of reference parts controls the
type of geometric invariants that can be represented.

In a k-fan the location of a non-reference part can be de-
scribed in a reference frame defined by the locations of the
k reference parts. For example, when k = 1 the location of
a non-reference part can be described relative to the loca-
tion of the single reference part. The values l′i = li − lr are
invariant under translations, so 1-fans can be used to define
translation invariant models. For the case of k = 2 the two
reference parts can be used to define models that are invari-
ant to rigid motions and global scaling. When k = 3 we
can use the three reference parts to define an affine basis in
the image plane, if the location of every non-reference part
is described in this basis we obtain affine invariant models.
These models are important because they capture arbitrary
views of planar objects under orthographic projection.

To enforce geometric invariants over k + 1 parts we can
define pM (li|lR) to be one if the k+1 locations satisfy a ge-
ometric constraint and zero otherwise. In general our mod-
els capture soft geometric constraints, giving preference to
configurations that satisfy relationships on k +1 features as
much as possible. The distribution over the reference part
locations pM (lR) could be uniform in the case where all
geometric constrains are defined in terms of k + 1 parts.

3.2. Gaussian k-fans

We now consider k-fan models with the additional con-
straint that pM (L) is a Gaussian distribution. For a Gaus-
sian model the marginal distribution of any subset of vari-
ables is itself Gaussian. Let µR and ΣR be the mean and
covariance for the locations of the reference parts. The

marginal distribution of the reference parts together with
one non-reference part is given by a Gaussian with mean
and covariance,

µi,R =
[

µi

µR

]
, Σi,R =

[
Σi ΣiR

ΣRi ΣR

]
. (6)

These can be used to define the spatial prior in terms of
equation (5). We will use this for learning Gaussian k-fans.
For inference we use the conditional form of the prior in
equation (4). For a Gaussian distribution, conditioning on a
set of variables preserves the Gaussian property. The con-
ditional distribution of a non-reference part location given
particular locations for the reference parts pM (li|lR) has
mean and covariance,

µi|R(lR) = µi + ΣiRΣR
−1(lR − µR), (7)

Σi|R = Σi − ΣiRΣR
−1ΣRi, (8)

Note how the covariance Σi|R is independent of the location
of the reference parts. This is a non-trivial property that
enables the use of distance transforms and convolutions to
obtain faster inference algorithms than is possible with non-
Gaussian models.

3.3. Learning

We can learn the spatial prior for Gaussian k-fan models
from labeled images using a maximum likelihood criterion.
For a fixed set of reference parts, estimating the maximum
likelihood parameters S∗ involves estimating the mean and
covariances in (6). These can be obtained from the sample
mean and covariance of the labeled configurations.

The more interesting case is when the reference parts are
not fixed. In this situation all possible reference sets of size
k can be considered in order to find the set R that yields the
best possible model. There are

(
n
k

)
possible reference sets,

and this is not very large for small values of k. For each
reference set we compute the maximum likelihood model
parameters using the simple procedure described above. We
can select the best reference set based on the likelihood of
the data under the maximum likelihood model for each R.

Learning the appearance parameters A∗ for the mod-
els described in Section 2.1 using labeled training data is
simple. To estimate fi the position of the ith part in each
training example is used to align the training images. The
maximum likelihood estimate for fi(p)[v] is simply the fre-
quency that pixel p has value v on the aligned data. The
only parameter that is not learned from the data is the size
and shape of the template Ti. For the experiments shown in
this paper we used rectangular windows of a fixed size.

3.4. Detection

For detection we consider the likelihood ratio in (2). The
numerator can be expressed as a sum over all possible object



configurations,

pM (I|w1) =
∑
L

pM (L)pM (I|L).

Using the likelihood function (3) we see that

pM (I|w1)
pM (I|w0)

=
∑
L

pM (L)
∏

vi∈V

gi(I, li).

For a k-fan model the sum over all configurations L can
be factored using the conditional form of the spatial prior in
(4). For each vi ∈ R we define

αi(lR) =
∑
li

pM (li|lR)gi(I, li).

Now the likelihood ratio can be computed as,

pM (I|w1)
pM (I|w0)

=
∑
lR


pM (lR)

∏
vi∈R

gi(I, li)
∏

vi∈R

αi(lR)


 .

Note that each αi can be computed by brute force in
O(hk+1) time, while the likelihood ratio can be computed
using the αi in O(nhk) time. This procedure gives an
O(nhk+1) algorithm for computing the likelihood ratio.

For the case of a Gaussian k-fan we can compute the
likelihood ratio even faster, using convolutions. For each
non-reference part vi we have,

pM (li|lR) = N (li, µi|R(lR),Σi|R),

a Gaussian distribution with mean and covariance given by
equations (7) and (8). Let α′

i(li) be the convolution of
gi(I, li) with a Gaussian kernel of covariance Σi|R. It is
not hard to see that,

αi(lR) = α′
i(µi|R(lR)).

So each αi can be implicitly computed by a convolution in
the space of possible locations in the image. This can be
done in O(h log h) time instead of O(hk+1).

The overall running time of the likelihood ratio compu-
tation for the case of a Gaussian k-fan model is O(nhk +
nh log h). Note that for a 1-fan model this is almost the
same as O(nh), the time that it would take to compute the
likelihood ratio if the locations of the parts were completely
independent. The log h dependency can be removed by us-
ing linear time methods that approximate Gaussian convo-
lutions, such as the box-filter technique in [12].

3.5. Localization

For localization we look for an object configuration L∗

with maximum posterior probability. Using Bayes law the
posterior distribution for a k-fan model can be written in

terms of the likelihood function (3) and the spatial prior (4).
By manipulating the terms we get,

pM (L|I) ∝ pM (lR)
∏

vi∈R

gi(I, li)
∏

vi∈R

pM (li|lR)gi(I, li).

For any vi ∈ R the quality of an optimal location for
the ith part can be expressed as a function of the reference
locations,

α∗
i (lR) = max

li
pM (li|lR)gi(I, li).

Using the α∗
i we can express the posterior probability of an

optimal configuration for the object with particular refer-
ence locations lR as,

β∗(lR) = pM (lR)
∏

vi∈R

gi(I, li)
∏

vi∈R

α∗
i (lR).

These functions can be used to compute an optimal config-
uration for the object in time polynomial in the number of
parts n and the number of locations for each part h (but ex-
ponential in k). Each α∗

i can be computed by brute force in
O(hk+1) time, while β∗ can be computed in O(nhk) time.
An optimal configuration for the reference parts l∗R is one
maximizing β∗. Finally, for each non-reference part we se-
lect l∗i maximizing pM (li|l∗R)gi(I, li). This can be done in
O(h) time. The overall running time of this procedure is
O(nhk+1), which is reasonable for very small k.

As in the case of detection we can speed up the local-
ization procedure for Gaussian k-fans. For localization the
role of convolutions is played by generalized distance trans-
forms [6]. In this case the running time of the localization
algorithm is reduced to O(nhk).

4. Experiments

We implemented the learning and localization methods
for k-fan models and carried out experiments to investi-
gate how increasing the degree of spatial constraints (i.e.
increasing k) affects object detection and localization accu-
racy. To facilitate comparison of these results with previous
work we used some of the datasets from [7]: airplanes (800
images), faces (435 images), motorbikes (800 images), and
background (800 images). To further facilitate evaluation,
we considered only the case of Gaussian k-fans (that is, we
did not use the reference parts to define a geometric basis
as described in Section 3.1). We tried to reproduce the ex-
perimental protocol of [7] as closely as possible, including
using the same partitioning of the data into training and test
images and using the same ground truth bounding boxes to
normalize for the object size across images.



(a) Airplane, 1-fan

(b) Airplane, 2-fan

(c) Motorbike, 1-fan

Vertical Horizontal 45 degrees 135 degrees
(d) Motorbike front wheel, probability of edge at each orientation

Figure 2. Illustration of some of the learned models. Images (a) through (c) show part appearance models positioned at their mean
configuration. The reference parts have a black border around them. The ellipses illustrate the location variances for a non-reference part
given the locations of the references. High intensity pixels represent high edge probabilities. For clarity, just the probability of an edge is
shown, although the actual models capture probabilities of each individual edge orientation. In (d), the probability map template for each
edge orientation is shown for a sample part (the front wheel of the motorbike model). Note how the locations of parts in the 2-fan airplane
model are more constrained than in the 1-fan model.

4.1. Learning the Models

As in [7], six parts were used to model each object. For
airplanes we used the front and back landing gear, nose,
wing tip, rear-most point of plane, and tail. For faces we
used the two eyes, nose, two corners of the mouth, and chin.
For motorbikes, the front and back wheel, headlight and tail
light, and the front and back of the seat were used. Ground
truth was collected by hand-labeling the training images.
Note that [7] used an unsupervised training method but we
should not expect supervised learning to necessarily give
better results than unsupervised learning – a supervised ap-
proach is limited by the quality of the parts chosen and the
accuracy of the hand-labeled ground truth.

The models were learned from labeled examples using
the procedure described in Section 3.3. To learn the ap-
pearance model for a given part, a fixed-size patch sur-
rounding the labeled part location was extracted from each
training image. Canny edge detection was used to gener-
ate edge maps. Edge orientation was quantized into four di-
rections (north/south, east/west, northeast/southwest, north-
west/southeast) and represented as four separate binary
edge maps. Morphological dilation was applied on each
map independently. The four maps were then combined to
form a single map with 16 possible values (corresponding
to the 24 possible edge orientation combinations) at each
pixel location. Foreground model probabilities were esti-
mated by computing the frequency of each of the 16 edge
values at each position in the template across the patches

extracted from the training images. The background model
probabilities were estimated from the observed density of
edges in background images.

Figure 2 illustrates some of the models we have learned.
Note that in each case the configuration of parts is readily
recognizable.

4.2. Detection Results

For detection we found an optimal configuration for the
object in each test image, using the procedure described in
Section 3.5, and then used that location to approximate the
likelihood ratio. With this approach each positive detection
comes with a particular localization.

In the first set of detection experiments, we pre-scaled
all images so that object width was roughly uniform, and all
parameters were kept exactly the same over different object
classes (template size = 50×50, dilation radius = 2.5 pixels).
To prevent biases related to image size, we padded out all
images to a large, uniform size.

Figure 3 shows the ROC curves generated from these ex-
periments. For each object class, the figure compares ROC
curves for k-fans with k ranging from 0 (no structure) to 2.
We observe that for motorbikes, high accuracy is achieved
using 0-fans, and adding spatial constraints gives little im-
provement. On the other hand, for airplanes, 1-fans perform
significantly better than 0-fans, and 2-fans perform signifi-
cantly better than 1-fans, indicating that increasing degrees
of spatial constraints give better performance. We conclude



Planes Bikes Faces
0-fans 90.5% 96.5% 98.2%
1-fans 91.3% 97.0% 98.2%
2-fans 93.3% 97.0% 98.2%

Table 1. Equal ROC performance for the detection experiments.
A boldface number for a k-fan indicates a statistically significant
difference between the areas under the ROC curves of the k − 1
and k-fan models (with 95% confidence).

that the appropriate amount of spatial structure in the model
varies from object to object.

Table 1 summarizes the recognition accuracy at the equal
ROC points (point at which the true positive rate equals
one minus the false positive rate). We note that our equal
ROC results compare favorably with those obtained using
full multivariate Gaussian structural models in [7]. They re-
port 90.2%, 92.5% and 96.4% for airplanes, motorbikes and
faces respectively, under the same experimental conditions.
We applied the statistical test of DeLong et al [5] to judge
the differences in areas under the ROC curves of the various
models. These results are also shown in Table 1. For each
object class we computed the probability that the area under
the ROC curve for the k-fan model is significantly different
from the area under the ROC curve for the model with one
less reference part. Differences significant at a greater than
95% confidence level are shown in boldface in the table.

Finally, we conducted multi-class detection experiments,
in order to test the ability of the models to differentiate be-
tween the three different object classes and the background
images. For each test image, the three object detectors were
applied, and the object class with the highest likelihood was
chosen. That likelihood was compared to the threshold at
the equal ROC point to decide between that object class and
the background class. The results are shown in Table 2. The
performance of multi-class recognition is similar to the sin-
gle class case. The use of relatively accurate probabilistic
models allows for direct comparison between the scores of
each object class without tunning weighting parameters.

As in [7], we tested the detectors in a setting where the
object scale was not known. The object widths varied be-
tween about 200 and 700 pixels for the motorbike and plane
categories, while the face dataset has very little scale varia-
tion. We applied the detectors at four different scales to each
image and chose the scale having the highest-likelihood de-
tection. Recognition performance in this experiment was
comparable to the case of pre-scaled images.

The average running time per image of the detection al-
gorithm on these datasets on a 3GHz Pentium IV is approx-
imately 0.1 seconds for a 1-fan model, 3.3 seconds for a
2-fan model, and 37.6 seconds for a 3-fan model.

1David Crandall is supported by an NSF graduate research fellowship.

4.3. Localization Accuracy

Figure 4 illustrates some localization results produced by
our system on the motorbike dataset, showing precise local-
ization of the parts despite substantial variability in their ap-
pearances and locations. Recent work has generally focused
on evaluating detection performance but we believe it is also
important to evaluate the accuracy of localization. For each
object class, for the subset of images that were correctly
classified during the detection task at the equal ROC point,
the part locations produced by our system were compared
to hand-labeled ground truth. We computed the trimmed
means (at 75% and 90%) of the Euclidean distances (in pix-
els) between estimated locations and the ground truth. For
the motorbike models the localization errors are reasonably
small (less than 10 pixels) for most parts when k > 0, while
the errors for faces are less than 2 pixels. Table 3 sum-
marizes the results for the motorbikes models. In this case
the localization accuracy is high for most parts when using
a model without spatial structure. The accuracy increases
as we add spatial constraints even when recognition perfor-
mance does not increase.
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Figure 3. Detection results for (a) airplanes and (b) motorbikes. Note that the ROC curves are truncated at a false positive rate of 0.7 and a
true positive rate of 0.3.

0-fan 1-fan 2-fan
Planes Bikes Faces BG Planes Bikes Faces BG Planes Bikes Faces BG

Planes 357 10 0 33 362 5 0 33 370 8 0 22
Bikes 4 382 0 14 4 384 0 12 4 384 0 12
Faces 3 9 205 0 3 8 206 0 1 9 207 0
Background 72 28 0 700 68 24 0 708 53 23 0 724

Table 2. Confusion matrices for the multi-class detection experiments. Rows correspond to actual classes, while columns correspond to
predicted classes.

Figure 4. Sample localization results. In each of these cases all parts were localized correctly.

Model Rear wheel Front wheel Headlight Tail light Back of seat Front of seat
75% 90% 75% 90% 75% 90% 75% 90% 75% 90% 75% 90%

No structure 15.6 34.4 1.9 2.3 10.9 18.8 12.0 19.3 21.6 33.9 6.3 12.2
1-fan 2.1 12.5 1.9 2.3 10.9 18.6 11.4 18.7 20.6 32.9 6.3 12.0
2-fan 1.9 2.4 1.9 2.3 10.1 16.6 11.0 18.3 17.2 28.5 5.4 9.3

Table 3. Part localization errors for the correctly detected motorbike images, showing 75% and 90% trimmed means of Euclidean distance
between estimated part locations and ground truth.


