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The Representation and Matching of Pictorial Structures
MARTIN A. FISCHLER AND ROBERT A. ELSCHLAGER

Abstract-The primary problem dealt with in this paper is the

following. Given some description of a visual object, find that object
in an actual photograph. Part of the solution to this problem is the
specification of a descriptive scheme, and a metric on which to base
the decision of "goodness" of matching or detection.
We offer a combined descriptive scheme and decision metric

which is general, intuitively satisfying, and which has led to promis-
ing experimental results. We also present an algorithm which takes
the above descriptions, together with a matrix representing the in-
tensities of the actual photograph, and then finds the described
object in the matrix. The algorithm uses a procedure similar to

dynamic programming in order to cut down on the vast amount of
computation otherwise necessary.

One desirable feature of the approach is its generality. A new

programming system does not need to be written for every new

description; instead, one just specifies descriptions in terms of a

certain set of primitives and parameters.
There ate many areas of application: scene analysis and descrip-

tion, map matching for navigation and guidance, optical tracking,
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stereo compilation, and image change detection. In fact, the ability
to describe, match, and register scenes is basic for almost any
image processing task.

Index Terms-Dynamic programming, heuristic optimization,
picture description, picture matching, picture processing, represen-
tation.

INTRODUCTION
TllHE PRIMARY PROBLEM dealt with in this

T paper is the following. Given some description of
a visual object, find that object in an actual photo-

graph. The object might be simple, such as a line, or
complicated, such as an ocean wave, and the description
can be linguistic, pictorial, procedural, etc. The actual
photograph will be called the "sensed scene," a two-
dimensional array of gray-level values, while the object
being sought is called the "reference."

This ability to find a reference in a sensed scene, or,
equivalently, to match or register the images of two
scenes, is basic for almost any image processing task.
Application to such areas as scene analysis and descrip-
tion, map matching for navigation and guidance, optical
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tracking, stereo compilation, and image change detec-
tion is direct and obvious.
There are two basic approaches to solving the image-

matching problem as defined above.
If we possess a precise description of the noise and dis-

tortion process which defines the mapping between the
reference and its image in the sensed scene, we can em-

ploy statistical decision theory techniques to derive an

image-matching procedure which optimizes some objec-
tive criterion (e.g., minimum error, or minimum risk,
in determining the best embedding of the reference in
the sensed scene). A typical outcome of such an analysis
is the use of a correlation-like matching procedure. How-
ever, in most practical problem situations, the required
noise and distortion model is not available, nor is it
feasible to attempt to construct one. For example, we

might consider all human faces to be perturbed versions
of some single ideal or reference face. However, to at-

tempt to define completely a valid noise and distortion
model for this situation would be a hopeless task.
A second and more general approach to the image-

matching problem bypasses the need for a noise and dis-
tortion model by accepting an embedding metric with-
out requiring its justification as being equivalent to a

minimum error (or minimum risk) procedure. In fact,
without a noise and distortion model, there is no the-
oretically valid way to derive or predict the error per-

formance of a selected procedure prior to its actual
application. Our primary concern in this paper is with
this latter case.

We offer the following two sets of criteria for an em-

bedding metric not theoretically derived on the basis
of error performance. First, it must be successful in
application (i.e., its observed error performance must

be acceptable), intuitively satisfying (so we can have
some confidence in its ability to deal with as yet untried
applications), and general enough so that it can be em-

ployed over a wide range of problems without significant
modification. Second, it must be possible to specify a

computationally feasible decision algorithm which se-

lects a suitable embedding based on the given em-

bedding metric. (The combination of embedding metric
and corresponding decision algorithm will be called an

embedding model.) In the remainder of this paper, we

will present an embedding metric and corresponding
decision algorithm, present examples of the application
of this embedding model to a number of distinct prob-
lem areas, and show how this embedding model is rele-
vant to the problem of scene representation as well as to

image matching.

AN EMBEDDING METRIC

To introduce the generic form of our embedding
metric, and establish its intuitive validity, let us first
consider the following process. Assume that the refer-
ence is an image on a transparent rubber sheet. We
move this sheet over the sensed image and, at each pos-

sible placement, we pull or push on the rubber sheet to

get the best possible alignment between the reference
image on the sheet and the underlying sensed image.
We evaluate each such embedding both by how good a
correspondence we were able to obtain and by how much
pushing and pulling we had to exert to obtain it.

Let us now consider a discrete version of the above
process which is both more precise and more reasonable
from an implementation standpoint. In a specific appli-
cation, we might have some information on the range
of permissible distortions that can occur between the
reference and sensed images. For instance, some subset
of the items appearing in the sensed image might always
retain their internal shape even though their relative
positions might be subject to change with respect to

their locations in the reference scene. Further, where
change of relative position is possible, we might be able
to bound the extent of such change; and, finally, we
might like to assign variable "costs" to the different
types of change of relative position or relative change in
some nongeometric attribute.
To achieve these capabilities, we replace the rubber

sheet by a reference image which is composed of a num-
ber of rigid pieces (components) held together by
"springs." A rigid piece of the reference image can be as
small as a single resolution cell, or as large as the entire
reference image, and corresponds to a single coherent
entity in the reference image. The springs joining the
rigid pieces serve both to constrain relative movement
and to measure the "cost" of the movement by how
much they are "stretched." (Typically, the springs will
be highly nonlinear in their behavior.) In determining
the cost of an embedding, we measure the "tension" on
each spring (the tension can be a function of direction
as well as stretch or even a relative change in some
locally defined attribute), and also make a local evalua-
tion of how well each coherent piece is embedded as an
independent entity.
The above model permits two interesting dichotomies.

The first dichotomy is the separation of "syntactic" and
"semantic" information. The semantic information,
which is application dependent, is embodied in the
specific partitioning of the reference into coherent
pieces, the placement and cost functions assigned to the
springs, and the cost functions associated with the inde-
pendent embedding of the coherent pieces. The syn-
tactic information, which is relatively independent of
the particular application, defines the class of descrip-
tions which the algorithm can process. These data are

embodied in the limits set on reference decomposition
(e.g., number and maximum size of pieces, etc.); in the
formats which must be employed to specify the global
constraints and costs; and in the form of the embedding
metric which evaluates "global" fit. The separation of
semantic and syntactic information is essential to per-
mit application of the model to a broad range of prob-
lem areas without the necessity of making significant
changes in the implementation.
The second dichotomy is the separation between the
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local and global evaluation functions. The global evalu-
ation function, associated with the relative positioning
of the coherent pieces as described previously, has
strong syntactic controls on its form to permit its inte-
gration directly into the decision algorithm. This is im-
portant because the global evaluation produces the most
severe combinatorial problems. A local evaluation func-
tion, associated with how well a given coherent piece is
independently embedded, is easily changed from prob-
lem to problem (based on problem-dependent considera-
tions) without requiring any change in the core algo-
rithms. Thus, the form of a local evaluation function
can be a (conventional) correlation function together
with a pictorial reference component, or a procedure
based on linguistic concepts together with a formal
description of a reference component,' or even a series
of guesses in'serted interactively by a human evaluator.
The decoupling of the local evaluation functions from
the core algorithms provides a great deal of flexibility
in' making changes or improvements in the evaluation
functions for a given problem, as well as when switching
from problem to problem. Further, because of the above
separation, the performance of the algorithms (both
local and global) can be independently evaluated in a
direct and intuitively obvious manner. Such an evalua-
tion then permits iterative improvement in performance
by selective alteration in the problem-dependent options.
We are now in a position to present formally the pro-

posed embedding metric. Let the reference be composed
of p components (i.e., p coherent, or primitive, pieces).
For 1 <i<p, let xi be a variable ranging over the set
of all locations of the sensed scene. xi is defined to be the
postion of the ith component. Suppose there is a mech-
anism, either a computer program, or possibly a person,
or some mechanical device, which, for location xi of the
ith component, outputs a numerical value l1(x2) that
indicates how strongly the ith component fits at location
xi of the sensed scene. The smaller li(xi), the better
the fit.
While not formally required, the intent is that li(x2)

measure the presence of the ith component at a location
in the sensed scene independent of any knowledge of the
.locations of the other components. That is, li(xi) is a
purely local and possibly imprecise measure of the pres-
ence of the ith component at location xi.

In addition to the purely local measure li, 1<i.p,
there are the following considerations: 1) how well the
different components are situated in the required spa-
tial relations to each other; and 2) how relative values
of attributes of the components compare with the cor-
responding measured values in the sensed image (e.g.,
we might want to specify that the ith component be
thicker and more greenish than the jth component). The

I Note that we are now further generalizinig the coincept of "com-
ponent." ITt no longer has to be a rigid entity defined pictorially, but
rather may be anv information structure or decision procedure which
can be used to define a real-valued function whose domain of defini-
tion is the set of all locations in the sensed image.

extent to which the above specifications are not satisfied
is reflected in the "stretching" of the springs between the
corresponding components.
Each location in the sensed image can be associated

with a two-dimensional vector (e.g., the components of
the vector can be the row and column number of the
location in the sensed scene). In that case, xi-xj (usual
vector subtraction) is a vector pointing from xj to xi.
We can now let gij(xi, xj) =gij(xi-xj) be the cost associ-
ated with the spring joining the ith and jth components.
If there is no spring between these components, then
gij is identically zero.

If we set gij(xi, xj) =lI(x) when i =j; and let Xi
= {Xi, x2, * , xi }, then the total cost of embedding p
components at locations X, is G(Xp).

p i

G(Xp) = E E gij(xi, xi).
i=i j-1

Expression (1) can also be written as
p

G(Xp) = E hi(Xi)
i=j

(1)

(2)

where

hi(Xi) gAjxi xj) .
j-l

hi(Xi) can be thought of as the cost of embedding the
ith component at location xi, given that the previous
i-1 components are at the locations specified by X2.

COMPUTATIONAL PROCEDURES
In this section of the paper, we will present computa-

tional procedures for locating a suitable embedding of
one image in another, based on the embedding metric
just presented. A discussion of dynamic programing
(DP) is included to place our proposed algorithm [the
"linear embedding algorithm" (LEA)] in proper per-
spective. In particular, a generic (but computationally
impractical) approach to solving the embedding prob-
lem is some form of DP. The specific form of our em-
bedding metric permits a simplification of the general
DP formulation, and the LEA is offered as a computa-
tionally feasible approximation to this restricted DP
formulation. A graph theoretic interpretation is in-
cluded to provide a better intuitive appreciation of the
LEA in relation to DP.

Let us assume that the sensed image, designated by
the abbreviation SM, is composed of M resolution ele-
ments; while the reference, designated by the abbrevia-
tion RM, is composed of P pictorially defined com-
ponents (coherent pieces) with a total of N= ni
resolution elements, ni being the number of resolution
elements in the ith component.
The most direct procedure for locating a best em-

bedding is to select combinationally N resolution ele-
ments at a time from the SMT, determine if each sucl- se-
lection satisfies the coherent (intracomponent) and
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global (intercomponent) constraints, and, if acceptable,
then evaluate the embedding metric for the given selec-
tion. Obviously, such an approach is completely imprac-
tical even for small pictures. For example, a 50X 30 SM
(M = 1500) and a 5 X 5 RM (N = 25) would require more
than 1054 selections and evaluations, a hopelessly large
number. If we assume that the coherent and relational
constraints provide us with P = 6 nonoverlapping com-
ponents, each component sequentially constrained to
stay within w = 10 locations referenced to the location
of the previously placed component, then we would still
be required to perform on the order of 1500 X 105
= 1.5 X 108 evaluations. Assuming 10-3 s per evaluation,
we would require 1.5 X 105 s or approximately two days
of computation time. It is thus obvious that a more
effective technique is required.

Dynamic Programming

Expressed in formal terms, the evaluation of the em-
bedding metric for a typical picture results in a non-
linear, integer programming problem with local optima
different from the global optimum (i.e., no particular
regularity, such as unimodality). The only available
class of computational procedures for finding the global
optimum under the above conditions (other than the ex-
haustive search techniques discussed earlier) is usually
designated by the generic name dynamic programming.
DP is a multistage or iterative optimization proce-

dure which can be described in general terms as follows
(see [6] and [7]). We wish to find

min G(X) = E h(Xi) (3)
X iEI

where X= {X1, X2, , xp4, each xi, 1<i<p, ranges
over a set of vectors with discrete components, I
= {1, 2, * , p}, and Xt is the set of those variables
(among X) upon which hi depends. hi 1, i< P, are
a given set of real-valued functions.2

Let XiI be the number of variables in Xi, and let
each xi, 1 <i < p, range over M values. Then each com-
ponent hi(Xt) of the cost function is specified by means
of a table with IXiI +1 columns and Mlx I rows.
The solution proceeds as follows. We select a variable

y1EX and compute the following expressions (this
gives us the minimization of G with respect to yi):

fl(F(y1)) = min E hi(Xi) (4)
Yl iEIl

y,*(r(yl))
= the value of yi which minimizes expression (4) (5)

where r(yi) is the set of all those variables (except yi)
which occur in any one of those Xi which contains yi.
In other words, F(yi) is the set of variables which in-
teracts with yi. Ih is the set of those i such that Xi con-

TheI{hi defined in (2) are independenit of all1 xj for j>i; the

Ihs) defined in the general DP formulation can be a function of
any xi.

tains yi. yl* is the optimizing assignment for yi as a func-
tion of the variables of F(y').
The operation described by (4) is called the elimina-

tion of the variable y, and results in the following trans-
formation of (3):

(6)min G(X) = min Ff(r(y1)) + E
x X-1v1 L i[I-I11]

Expression (6) has the same form as (3), but does not
contain yi. Thus, we can find an optimal assignment for
X be sequentially "eliminating" all of the variables, and
then tracing back through the stored tables of yi*(P(yi)),
where P(yi) can only contain yj such that j>i. That is,
we must eventually reach a point where, for some s,

s

U Ij = I
j=1

and expression (6) has the form

r(Ya)
min G(X) = min Lf8(Y8+i, YP)]
X (Y,8+1,s ' '' Yp I

From (7) we can directly determine the global mini-
mum cost for G and also the optimizing values for
Y= (y., Ys+1, , yp). Given the value for Y, we can
determine the value of y,,1* from the stored table for
Ysl*(r(y,s_1)), as indicated in expression (5). This "back-
ward" recursive process is continued to provide us with
the complete optimizing assignment for X.
The computational feasibility of the DP approach de-

pends on storage and computing time requirements.
For a given objective function (in our case, the embed-
ding metric), storage and computing time requirements
are a function of the order in which the variables are
eliminated [3], [7] and the dimensionality of each of
the eliminated variables. We will say that variable yt
has dimensionality F(yi) |, where F(y) is the number
of variables in the set L(yi) as defined following (4) and
(5). For many of the problems we shall be concerned
with, the dimensionality will be essentially constant
over all variables (i.e., a constant number of springs
attached to each component and a symmetric intercon-
nection topology) and relatively independent of order
of elimination. Let us associate the dimensionality of
the variables with the embedding function itself em-
ploying the designation D(G) to denote the maximum
dimensionality of any of the variables to be eliminated
for a given order of elimination.
Where the dimensionality of all variables is constant

for a given order of elimination, the complete embedding
procedure will involve the iterative application of (4)
and (5) [p-D(G) ] times, to evaluate the p arguments of
G corresponding to the embedding of the p compo-
nents. In the kth iteration,3 we compute and store a

The kth iteration evaluates the "cost" of embedding the kth
component at yk*, given some specific embedding of the components
associated with the variables in r(y). This evaluation corresponds to
the elimination of Yk.
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table forfk and yk*. The number of lookups required for
the construction of this kth table will be proportional to
the number4 of its rows- [AMD(G)j] and (for each row)
the constrained number of feasible locations of the-vari-
able being eliminated (denoted Wk, whereWk<W.f). Thus
we have a storage requirement of 2 MD(G) elements per
table (the two entries stored in each row of the table are
values of fk and yk*), and a computation requirement of
up to MD(G)+1 lookups (with one or more additions and
comparisons per lookup).

If Wk=W for all k, and all variables have dimension-
ality D(G), the complete embedding procedure then has
a computation requirement proportional to

[p - D(G)] (w) [MD (G)] lookups (8)
transient (fast store) storage requirement propor-
tional to

2. [MD(G)] entries (9)

and a static (secondary store) storage requirement (for
the "backward" selection of the yi after obtaining the
minimum global cost) proportional to

[p - D(G)][MD(G)] entries. (10)

For the earlier example where M=50X30 =1500 loca-
tions, (for 1 < k < P)Wk =W = 10 locations, and p = 6 com-
ponents, if these components are connected in a linear
sequence where each interior component lhas only one
spring attached to each of its two immediate neighbors
and the end components only one spring each, the num-
ber of computations5 would involve 75 X 103 lookups and
evaluations, or 75 s of computing time at 10-3 s per
computation. This is certainly a much more reasonable
requirement than the two days of computing time for a
direct evaluation. We pay for this speedup6 by having a
fast storage requirement of 3X103 entries (or words),
and backup storage requirement of 7.5 X 103 entries,
versus a storage requirement of only a few entries for
the direct evaluation.
Now, however, note that, if we permit just one addi-

tional spring per component (or even a single spring
linking the first and last components), D(G) = 2 and the
number of computations increase by a factor of almost
M= 1500 to 9 X 107 lookups and evaluations, or 9 X 104 s
=25 h. The fast storage requirement increases by a
factor of Al= 1500 to 4.5 X 106 entries, and the backup
storage requirement increases to 9 X 106 entries.

This exercise demonstrates that, for even a small in-
crease over unit dimensionality, the utility of dynamic-
programming as a computational technique is question-
able for the embedding task. The next subsection intro-
duces a heuristic modification to the DP type of sequen-

Relational constrainits canl redtuce the number of feasible rows
to a value considerably below the unconstrained case. However, the
comipuitational problems, in attempting to take "advantage" of this
reduction, may be prohibitive.

I Assuming the variables are eliminated in the order in which thev
appear in the linear sequence, then D(G) = 1.

6 Dynamic programming cani be considered to he a way of trading
storage for compuitation time.

tial optimization which eliminates the growth of dimen-
sionality as more global constraints (springs) are per-
mitted.

Linear Embedding

The sequential embedding technique which we pre-
sent in this section will be called the linear embedding
algorithm (LEA). The essential property of this algo-
rithm is its ability to locate a suitable embedding with
a linear, rather than exponential, growth of storage and
computing time requirements as a function of the
number of components in the reference. The algorithm
is formally described as follows.

Given a reference with p components, for 1<i<P,
li(x.) is the externally supplied local evaluation array
for the ith component as a function of xi, its embedded
location. Given that the ith component is embedded in
location xi, wi(xi) is the constrained set of feasible loca-
tions for xi-,.

If y is the sequence (1, 3, 2, 5), then y * 8 will be an-
other way of writing (1, 3, 2, 5, 8). Si(xi, . . xi)
= L_=1 gij(xi, xj), Where each gij is an externally sup-
plied spring array, specified as a function of the relative
embeddings of the ith and jth components. This decom-
position of Si into a sum of two-place functions (springs)
is not required in the following LEA. Thus, if desired,
we could extend the scope of the embedding metric to
include more complex relational forms without increas-
ing the computational complexity of the embedding
algorithm (LEA).
The LEA is the computation, in order, of the follow-

ing sequence of 2p+2 equations. (Note that hi=si+Ii.)

gi(xs) = 11(x1)

y1(x1) = XI

(11)
(12)

g2(X2) = llun [S2(Xl, X2) + 1)(X2) + gl(Xl)] (13)
x1 Eu, (X2 )

y2(x.,) = y1(x1) * X2, where x1 is that value which
minimizes the previous equation.

gi(xi)' =

(14)

min [S,(yi-l(xi l) + x,) * li(xi)
xi _ I ! )

+ gi-1(xi--)] (15)

yi(Xi) = yi-(xi1) * xi, where xi-, is that value which
minimizes the previous equation. (16)

gp(xp) = . . .

yp(xp) = . .

G = min gp(xp).
x
p

Y = YP(xP),

(17)
(18)

(19)

where x1, is that value which
minimizes the previous equation. (20)

As in the subsection on dynamic programming, G
[see (19)] is the total embedding cost, and the cor-
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responding locations of the embedded components are
determined from Y [see (20)].7

Given the restriction that the hi in (3) are independent
of all xj forj > i [this is consistent with the embedding
metric as presented in (2) ], then dynamic programming
can be viewed as a procedure for finding the shortest
path through a graph. We define this graph in the fol-
lowing way. The nodes of the graph are arranged in p
columns, where each node in the ith column is labeled
by the values of the variables corresponding to a unique
set of embeddings for the first i components; there are
as many nodes in the ith column as there are unique
embeddings of the first i components. The length of a
branch between a node in column i -1 (with label Xi1)
and a node in column i (with label Xi) is hi(Xi). We
delete branches with infinite length.
To determine the shortest path from the root node

(a single node placed in column zero) to some node in
column p, we can proceed as follows. In the ith column,
for each node, sum all the branch lengths corresponding
to the label of the node. We now determine that set of
variables (xi) which do not appear in any hj for j> i,
and call this set of variables Zi (the variables in Zi cor-
respond to components in columns j<i which do not
have spring connections to components in columns
j>i). We now place the nodes in the ith column into
sets, such that, for each set, the nodes are identical in
their labels except for the variables in Zi. For each such
set, we retain the node with the shortest path length
from the root node, and delete all the other nodes in the
set as well as those nodes in columnsj>i which branch
from deleted nodes. It is this pruning process which
gives DP its computational advantage over complete
enumeration. After the above set of operations is carried
out through the Pth column, we select the node defining
the shortest path through the tree, and thus the lowest
cost embedding for the P components. The LEA differs
from DP in that in the sequential determination of the
shortest path, a maximum of only mi nodes will be re-
tained in the ith column (mi is the number of permissible
locations for embedding the ith component). In pro-
cessing the ith column, the nodes are grouped into sets
such that, for each set, the nodes are identical in their
labels for xi. For each such set we then proceed as in the
DP case. Thus, at the ith iteration we save only the mi
"best" current embeddings, such that every possible

7The yi defined in (16) clarify the presentation of the LEA. How-
ever, in a computer implementation one need Inot calculate these yi,
which are arravs, each element of which is a sequence of locations.
Rather, it is only necessary to compute a more restricted funiction Zi
defined by

Zi (Xi) = Xi-l

where xi- is that value which minimizes the previous equiation
These zi are arrays, each element of which is a single locatioii

rather than a sequence of locations. Then in the compuitations in-
volving the Si, if Si depends on more than the two rightmost loca-
tions of y_ (xi-,)*xi, the additional locations may be retrieved from
the Zk, 1 <k<i-1.

positioning of the ith component occurs in one of the
embeddings. This approximation technique may fail to
find the best embedding (shortest path) if the com-
ponents with low indicies (small i) incur a high em-
bedding cost when placed in their optimal locations.

If the components of the reference are linked by a
single chain of springs (which are then called primary
springs), DP and the LEA provide identical solutions.
When additional springs are present, the LEA no longer
assures the optimal embedding, and these additional
springs are called hueristic springs (hueristic in the
sense that while these additional springs provide more
information and thus give an intuitively better match
than in the single chain case, the best possible use of this
additional information is not always assured). The
operation of the LEA is illustrated by the example
given in Fig. 1.

Additional Computation Speedup and Storage
Reduction Techniques

By slowing the growth of the computation and stor-
age requirements to a linear function of the size (M) of
the pictures, the LEA establishes itself as a feasible em-
bedding procedure. However, because of the large pro-
portionality constants, the practicality of employing the
LEA will probably depend on the efficiency of the asso-
ciated computer programing, and on the employment
of additional (second-order) speedup and storage reduc-
tion techniques. Two of the more important speedup
techniques, applicable to both DP and the LEA, are
discussed below.
The dynamic programming and LEA formalisms pre-

sented earlier do not explicitly consider constraints on
the variables (xi). The simplest way of treating such
constraints is to introduce into the objective function
(embedding metric) cost terms which become infinite if
the relational constraints are violated. This approach
handles the problem by increasing the computation time
needed to evaluate the additional cost terms. A much
more desirable technique is to employ the explicit rela-
tional constraints (the wi) to limit both the table size
and search requirements by ignoring or eliminating
infeasible variable combinations. This technique is
illustrated in [1]- [3], and was considered in deriving
expression (8). When the relational constraints are im-
plicit (i.e., must be computed from the given data), it is
not clear whether any advantage can be gained from
first converting them to explicit form, and then applying
the above technique.
Dynamic programming and the linear embedding

algorithm previously described can both be speeded up by
the following (type of branch-and-bound) technique.
We examine a number of complete embeddings, and
select the lowest cost corresponding to any one of these
trial embeddings. (The embeddings themselves could
have been obtained by random placements of the corn-
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Fig. 1. An example illustrating the operation of the linear embedding algorithm. The definitions of x, gij, I, are given on pages

z and y are the components of x; that is, x = (z, y). (a) The sensed image. (b) The reference description. (c) Linear embedding algorithm.
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ponents, or perhaps by someone guessing at what a
"good" embedding might actually look like.) Now, em-
ploying the LEA (or DP) to place and evaluate the
cumulative cost of placement of the components se-
quentially, we can eliminate from further consideration
any of those placements whose costs exceed the bound
established by our best trial embedding. It should be
noted that this technique is valid only if the cost asso-
ciated with the embedding of each component is non-
negative. However, this can almost always be the case
for the class of problems we are discussing in this paper.
A heuristic embellishment of the above branch-and-

bound technique would be to use some fraction (say
[k/N]') of the bound at the kth stage of an N-stage
process as the threshold for eliminating a possible se-
quence of embeddings.

Scale and Rotation (S&R) Considerations
In attempting to match or register two images, we

frequently are faced with the problem of unknown rela-
tive scale and orientation. While such variations are
conceptually indistinct fromn any of a host of unwanted
variations between the reference and the image, they
(S&R) can serve as a vehicle for clarifying some im-
portant issues pertaining to the way the LEA is em-
ployed.
As noted in earlier sections, the embedding process is

carried out at two levels. First, the components of the
reference are searched for as independent entities. The
particular processes by which these searches are exe-
cuted are not a direct issue of concern here; the im-
portant point is that, regardless of the search mecha-
nism, the outcome of the search for any individual com-
ponent is presented to the LEA by a tabulation called
the local evaluation array [L(EV)A]. Each entry in the
L(EV)A corresponds to a possible embedding in the
image of the associated reference component, indexed by
the variables used to define the embedding. The entry
consists of a number related to the probability that the
-component is actually present at the "location" specified
by the indexing variables, and each entry can also con-
tain the values of attributes of the component as mea-
sured at the indexed location. The LEA has no knowl-
edge of the component beyond what is presented to it
in the L(EV)A for that component. The purpose of the
LEA is to integrate global or structural knowledge with
the information provided in the L(EV)A's to find the
best overall embedding (or embeddings) of the reference
in the image. The acceptability of the final embedding
selected by the LEA will thus be dependent on tlhe qual-
ity of the information presented in the L(EV)A's,
where the extent of this dependence is related to the
relative importance of local (component definition) ver-
sus global (intercomponent) information for the particu-
lar problem. Thus, it is the responsibility of the local
evaluation function, in attempting to gather evidence
about the presence of some given reference component,
to be able to deal with the various noise and distortion

Fig. 2. Reference description of a squiare.

processes (such as S&R) which might be encountered.
To the extent that these same noise and distortion pro-
cesses affect the global or structural relationships be-
tween the reference components, the LEA provides the
machinery necessary to deal with the resulting problems.

Ability to deal with variations at the global level is
accomplished by defining "attributes" which measure
(or estimate) these variations, and then making the
"spring" parameters functions of these attributes.
Thus, in the case of S&R, if a component Pi has scale

and rotation attributes Si and 01, the springs (vectors)
attached to P1 would be (conceptually) scaled as a func-
tion of S1, and rotated as a function of 01. The following
example illustrates some of the above comments.

Problem

Given a two-dimensional region in which there are k
randomly oriented and positioned line segments, find
the four-line segments which best approximate a square.
Each line is specified by a four-tuple of the type (x, y,
0, 1) where the x, y coordinates locate the center of the
segment, 0 specifies the orientation, and I the length of
the segment. To simplify this example, we will ignore
the detection problem and assume that the given values
for each segment are known with probability one. We
assign a cost Ci for each unit of positional disparity be-
tween the sides of a candidate square, and a cost C2 for
each degree of rotational disparity between the sides
(i.e., sides should meet at right angles).

Solution

Consider a single "local evaluation array" consisting
of the given list of four-tuples (x, y, 0, 1). We can con-
sider x, y to be the "location" indexing variables, and
0, 1 to be attributes. All entries have unit probability,
entries with zero probability are deleted. The "descrip-
tion" of a square is shown schematically in Fig. 2. Each
(spring) vector is rigidly attached to its line segment at
a fixed angle of 45°. Costs (C1) associated with (x, y) dis-
parity between the end of a vector and the center of the
next line segment are circularly symmetric (i.e., the
"cost" function increases with distance from the tip of
the vector) about the tip of the vector. We also assess a
cost (C2) proportional to the difference in measured
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(attribute value) orientation of more or less than 900
for sequential line segments.
The general form of the LEA, with orientation ad-

justed springs, and spring costs augmented by attribute
(S&R) differences, is adequate to deal with the prob-
lem as posed. A minor difficulty arises from the fact that
the orientation of a line segment is actually two valued
(i.e., 0 and 0+1800). If we list each line segment twice
in the local evaluation array, once for each of its two
orientations, then the LEA can be applied without
modification.
We can handle squares of differing size by using the

line-segment-length attribute in the same manner as the
orientation attribute (except that double entries are not
required here). Spring stretching is augmented by a
cost proportional to the difference in length attribute
for sequential line segments. That is, when the LEA
examines a new line segment as a possible additional
side for a square already partially formed, it compares
the length of the new line segment with the length of the
line segment in the partial square to which the new seg-
ment will be attached. The spring between the new and
the old line segments then is stretched (over and above
any stretching due to angular and positional disparity)
by an amount proportional to the difference in these
lengths.

In the above example note that, because each entry
in the local evaluation array had either zero (oo cost)
or unit (0 cost) probability associated with its occur-
rence, the size of this array could be reduced to listing
only those few coordinate combinations associated with
the feasible (nonzero probability) occurrence of a com-
ponent (line segment). This procedure can be used in
other situations where it is reasonable to reduce all low
probability entries in the local evaluation array to zero.

PICTORIAL REPRESENTATION

A central problem in much of the work concerned
with the computer processing of pictorial data is that of
representation. Since we cannot manipulate the real
world object (itself) within the computer, we attempt to
construct a representation (or model) which can be used
in place of the actual object and which has the following
(somewhat overlapping) properties.

Complete: Any question of interest which could be
resolved by reference to the actual object should also be
capable of being resolved by reference to the represen-
tation.

Compact: The representation should be free of infor-
mation redundant to the purposes for which it will be
used. This is necessary to minimize computer storage
requirements.

Transformable: Much of the information contained in
a representation will be implicit rather than explicit in
form. The ability to manipulate easily the representa-
tion to extract required information is essential. For
example, if we represent a picture by an intensity matrix
or raster, then a count of the number of isolated objects

appearing in the picture would be implicit information
which could be extracted from the representation after
considerable processing. However, if the representation
consisted of the contours of the object appearing in the
picture, then the required count could be obtained
rather simply.

Incrementally Changeable: If we observe a slight
change in the real world object, it should be a relatively
simple and straightforward task to alter the representa-
tion. Further, from the standpoint of image matching,
a small change in the real world should require only a
small change in the representation.

Accuracy and Simplicity of Translation: Given a real
world object, it should be relatively simple to derive an
accurate representation of the object.
Over the past ten years or so, much of the work con-

cerned with pictorial representation has been restricted
to the domain of line type drawings, and the use of for-
mal linguistic methods (see [8 ]- [10 ]). Very little success
has been achieved in attempts to extend this work to
scenes of terrains, cloud covers, human faces, etc.,
which can only be described meaningfully in terms of
picture components which are not line elements, but
which are regions with colors, textures, shadings, etc.8

Perhaps the most serious failing of the linguistic (and
similar) techniques occurs with respect to the "transla-
tion" property. These techniques build a representation
by constructing a hierarchy based on picture primitives,
assembled into linear expressions employing specified
relational forms, and satisfying a set of syntax rules. The
problem arises from the fact that (usually) the only
direct correspondence between the actual object and its
representation occurs at the level of the primitive ele-
ments (typically points, intensities, and lines), while in
practice there are pieces of a picture that are too in-
volved or complicated to describe in terms of these
primitives. Theoretically, the description is possible
since the matrix representing the picture is finite. How-
ever, such a description would be so complicated that,
aside from the difficulty of composing it, there would be
a considerable likelihood of error and inaccurate repre-
sentation.

In the previous portions of this paper we have pre-
sented a representational scheme for pictures, and were
primarily concerned with its application to image
matching. We will now show that the representational
scheme has wide general applicability, and avoids many
of the problems of the linguistic approaches. First we
note that it is a hybrid type of representation in that it
invokes symbolic (numerical) elements as well as allow-
ing actual picture segments to be part of the representa-
tion. The ability to intermix picture segments and sym-
bolic data in the same representation greatly simplifies

8 Specialized systems have been developed, highly tailored to
specific problems, which are exceptions to this assertion; e.g., see
Kelly [11]. A number of papers, including Bledsoe [15], [161 and

* Goldstein and Harmon [17], effectively consider the problem of face
identification based on feature measurements obtained manually.
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the translation problem. Where a pictorial concept is
difficult to describe symbolically, we can use an actual
piece of the picture as part of the description. A second
aspect of our representation that simplifies the transla-
tion problem is the fact that the components (picture
pieces, local evaluation arrays, etc.) and the relational
forms (springs) are two-dimensional rather than one-

dimensional entities. We thus avoid the problem of hav-
ing to construct a one-dimensional model for a two-

dimensional structure.
Let us now examine some of the other representational

attributes. Incremental changeability follows directly
from ease of translation (although the inverse relation-
ship would not necessarily hold). Transformability with
respect to image matching has certainly been estab-
lished; the fact that the representation is already in

two-dimensional form, with metric, geometrical, and
topological relationships explicitly and quantitatively
expressed, implies that transformability for many other
applications is more than adequate.

In many respects, compactness and transformability
are antithetical since data in explicit form are usually
more extensive than the equivalent implicit information.
This is the case with our representation. It requires con-

siderably more storage than might be required for a

linguistic representation.
The one area where the linguistic approach has an

obvious advantage is with respect to completeness. A
linguistic representation can treat nonpictorial informa-
tion (e.g., relations between items in a picture and other
items not visible, but perhaps implied or normally
associated with the pictured items) in a way that would
be extremely difficult in our representation. This addi-
tional capability could, of course, be achieved by ap-

pending the necessary linguistic machinery to our cur-

rent scheme, although the final result might well be a

mixture of two representations rather than one inte-
grated representation.

EXPERIMENTAL RESULTS

In order to evaluate the practical implications of the
techniques presented in this paper, we have initiated a

program involving experiments on a variety of line type

drawings and gray-level imagery. Over 400 experiments
have already been performed with the following general
results.

1) On well-defined imagery (i.e., relatively noise-free
and unblurred -pictures), the embeddings produced by
the LEA were almost always in agreement with the best
embedding as predetermined by human evaluators.
Where the few deviations did occur, they were reason-

able, and usually related to the crude component de-
scriptions employed.

2) On noisy imagery (course resolution, additive
random and coherent noise), the fall in performance
paralleled the difficulty human evaluators had in locat-

ing suitable embeddings. Where the components were
discernible in the image, the embeddings were usually
correct; those components which were significantly
altered by the noise were sometimes missed, but the
substitution error was usually in close proximity to the
correct embedding location, and, even in error, the
correct embedding almost always had a score close to
the best score.

Since the programmed version of the algorithm is still
evolving, and some of the discussed features have not
yet been implemented (e.g., the "attribute" feature is
not operational as yet), most of the experiments were
informal in nature. However, for the purposes of this
paper, two sets of controlled experiments were run and
are described below.

Image-Matching Experiments Using Faces

The majority of the experiments we have run to date
had human faces as their subject. Reasons for this selec-
tion include the following.

1) The availability of a set of digitized gray-scale
pictures containing faces.

2) A single reference (face) could be tested on all the
faces in the data set. In the case of, say, terrain pictures,
a separate reference (or, at best, a unique composition
of standard reference components) is necessary for each
picture.

3) Our familiarity with faces and their components
(eyes, nose, mouth, etc.) facilitates evaluation of per-
formance as noise and distortion are introduced.
The data set used in the face experiments consisted of

15 human faces,9 both men (some with beards) and
women, digitized to approximately 16 true gray levels,
and each face typically was contained in a picture field
of from 2000 to 3000 resolution elements. Using a refer-
ence as shown schematically in Fig. 3(a), with com,
ponents as described in Fig. 3(b) and (c), almost 300
formal and informal experiments were performed. In
each experiment, additive (truncated) Gaussian random
noise with zero-mean and standard deviation of either 0,
10, or 15 units was added to each resolution element
(relative to a pseudogray scale of 64 units for the noise-
free pictures). In some of the informal experiments,
coherent noise consisting of randomly placed lines was
also inserted [see Fig. 4(a)].
With no more than two or three exceptions, when the

reference was restricted to hair, eyes, and sides of face,
correct embedding was achieved. These results are
gratifying in view of the simple component descriptions
employed, and the equivocation displayed by the re-
sulting L(EV)A's. (See examples shown in Fig. 4.)
Two series of formal experiments were run on the

I These data were obtained from the Staiiford Artificial Intelli-
gence Laboratory and are a subset of the data employed in the ex-
periments described by Kelly [11].
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(a)

VALUE(X)=(E+F+G+H)-(A+B+C+D)

Note: VALUE(X) is the value assigned to the
L(EV)A corresponding to the location X
as a function of the intensities of locations
A through H in the sensed scene.

(b)

K K2=CONSTANTS
a=(C+D+E+F)/4
p=(A+B+G+H+I+J)/6

p-(X+F)
IF [X<(a-K}) OR. a < /3)THEN VALUE(X)=yFK2
ELSE VALUE (X) = y

(c)
Fig. 3. Reference description of a face. (a) Schematic representation

of face reference, indicating components and their linkages.
(b) Reference description for left edge of face. (c) Reference
description for eye.

(noisy) face pictures using two references which in-
cluded, but differed in, the nose/mouth definitions. In
the first series, consisting of 90 experiments, there were

83 completely correct embeddings, and 7 partially incor-
rect embeddings. The errors involved six experiments
in which the nose/mouth complex was offset by three to

four resolution cells from its ideal location, and one ex-

periment in which both the eyes and the nose/mouth
complex were improperly placed. In the second series,
consisting of 45 experiments, the placement of the nose/
mouth complex was judged incorrect in 3 experiments,
while all the other components were always correctly
embedded.

Analysis of the face experiments led to the following
conclusions. In spite of almost perfect performance in
embedding the hair, eyes, and sides of the face, precise
placement of the nose/mouth complex based on strictly
local evaluation was almost impossible in some of the
noisy pictures due to loss of detail [e.g., see Fig. 4(b) ].
With the attribute feature of the LEA not yet opera-

tional, and with the arbitrary decision to use binary
(rather than multivalued) weights in the spring arrays

for these experiments, the LEA restricted the feasible
region over which an optimum value could be selected
for embedding the nose/mouth complex, but did not
bias the selection as would genetally be the case. In the
presence of heavy noise, the simple nose/mouth descrip-

tions used in these experiments were not always ade-
quate to produce a local optimum in the L(EV)A at or
near the ideal embedding location. (A three-resolution
cell deviation was considered an error.)

Image-Matching Experiments Using Terrain Scenes

Approximately 40 experiments have been performed
using terrain scenes (including both aerial and ground
scenes). The object in each case was to create a relatively
simple description of some portion of the scene and then
attempt to find the proper embedding of the description
in the image (or some distorted or alternate view of
the image).
The descriptions employed two basic types of com-

ponents: 1) texture components, in which- the "texture
value" of a point was defined as a crude statistical func-
tion of the intensity values and gradients in some local
region surrounding the point; and 2) shape components,
which were defined by collections of "edge" points hav-
ing specified gradients.

Fig. 5(a) shows an example of a terrain (reference)
description. Fig. 5(b) shows its successful embedding
relative to the computer-stored version of the photo-
graph of the actual terrain segment as shown in Fig.
5 (c). Each coherent piece in reference 5 (a) is represented
by several points enclosed by a dotted line. In this ex-

ample, the points of each enclosure of the reference com-
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (6, 18)
L/EDGE WAS LOCATED AT (18, 10)
R/EDGE WAS LOCATED AT (18, 25)
L/EYE WAS LOCATED AT (17,13)
R/EYE WAS LOCATED AT (17, 21)
NOSE WAS LOCATtD AT (22,18)
MOUTH WAS LOCATED AT (24,17)

123456 7°9'l23456 7890 12 34567 89 C12 3456 78q0

L(EV)A for eye. (Density at a point is proportional to
probability that an eye is present at that location.)

(a)

Fig. 4. Examples of image-matching experiments using faces. (a) Successful embedding under coherent nioise.
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Original picture.
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L(EV)A for nose. (Density at a point is proportional

to probability that nose is present at that loca-

tion.)
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (8,21)
L/EDGE WAS LOCATED AT (17, 11)
R/EDGE WAS LOCATED AT (17,25)
L/EYE WAS LOCATED AT (17,14)
R/EYE WAS LOCATED AT (17,20)
NOSE WAS LOCATED AT (21,16)
MOUTH WAS LOCATED AT (23,16)

(b)
Fig. 4 (continued). (b) Incorrect embedding of nose under random noise.
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Original picture.
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16 MMMA4XMAAXXAAXMMXMXMXAMAMMMMM'4
19 MMMMMAMAMMMX2ZAXZXMX1ZXAAAXMFMMMM
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L(EV)A for nose. (Density at a point is proportional

to probability that nose is present at that loca-
tion.)
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (7, 23)
b/EDGE WAS LOCATED AT (17,13)
R/EDGE WAS LOCATED AT (17, 26)
L/EYE WAS LOCATED AT (14,17)
R/EYE WAS LOCATED AT (14,23)
NOSE WAS LOCATED AT (20, 20)
MOUTH WAS LOCATED AT (22, 20)

(c)

Fig. 4 (continued). (c) Successful embedding under random noise.
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1.
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Original picture.
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (11, 21)

L/EDGE WAS LOCATED AT (25, 11)

R/EDGE WAS LOCATED AT (25, 24)

L/EYE WAS LOCATED AT (21, 15)

R/EYE WAS LOCATED AT (21, 21)

NOSE WAS LOCATED AT (26, 18)

MOUTH WAS LOCATED AT (29, 17)

1234567593 123456789012345678901~234567P?0

L(EV)A for hair. (Density at a point is proportional
to probability that hair is present at that loca-

tion.)

(d)

Fig. 4 (conitinued). (d) Successful embedding under random noise.
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Original picttire.
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (8, 20)
L/EDGE WAS LOCATED AT (20, 11)
R/EDGE WAS LOCATED AT (20, 27)
L/EYE WAS LOCATED AT (18,15)
R/EYE WAS LOCATED AT (18, 23)
NOSE WAS LOCATED AT (23,18)
MOUTH WAS LOCATED AT (25,18)
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L(EV)A for L/EDGE. (Density at a point is propor-
tional -to probability that L/EDGE is present at
that location.)

(e)

Fig. 4 (continued). (e) Successful embedding under random noise.
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L(EV)A for R/EDGE. (Density at a point is propor-
tional to probability that R/EDGE is present at
-that location.)
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (11, 15)
L/EDGE WAS LOCATED AT (19,8)
R/EDGE WAS LOCATED AT (19, 24)
L/EYE WAS LOCATED AT (19,12)
R/EYE WAS LOCATED AT (19, 20)
NOSE WAS LOCATED AT (25,15)
MOUTH WAS LOCATED AT (28,15)

(f)
Fig. 4 (continued). (f) Successful embedding under random noise.
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (13,23)
L/EDGE WAS LOCATED AT (25,13)
R/EDGE WAS LOCATED AT (25,28)
L/EYE WAS LOCATED AT (22,16)
R/EYE WAS LOCATED AT (22,23)
NOSE WAS LOCATED AT (27,20)
MOUTH WAS LOCATED AT (29,19)

L(EV)A for eye. (Density at a point is proportional to
probability that eye is present at that location.)

(g)
Fig. 4 (continued). (g) Successful embedding under random noise.
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L(EV)A for mouth. (Density at a. point is proportional
to probability that.mouth is presetit at that loca-
tion.)
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (8, 19)
L/EDGE WAS LOCATED AT (16,9)
R/EDGE WAS LOCATED AT (16, 23)
L/EYE WAS LOCATED AT (14,12)
R/EYE WAS LOCATED AT (14,18)
NOSE WAS LOCATED AT (18, 16)
MOUTH WAS LOCATED AT (21,16)

(h)
Fig. 4 (continued). (h) Successful embedding under random noise.
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L(EV)A for nose. (Density at a point is proportional
to probability that nose is present at that loca-
tion.)
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Noisy pictuire (sensed scene) as uised in experiment.

HAIR WAS LOCATED AT (9,19)

L/EDGE WAS LOCATED AT (22 ,9)

R/EDGE WAS LOCATED AT (22, 22)

L/EYE WAS LOCATED AT (19, 12)

R/EYE WAS LOCATED AT (19, 19)

NOSE WAS LOCATED AT (24, 16)

MOUTH WAS LOCATED AT (26,15)

(i)

Fig. 4 (continued). (i) Successful embedding Illder ranidom noise.
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (9, 20)
L/EDGE WAS LOCATED AT (20 ,12)
R/EDGE WAS LOCATED AT (20,27)
L/EYE WAS LOCATED AT (18,15)
R/EYE WAS LOCATED AT (18, 22)
NOSE WAS LOCATED AT (24, 18)
MOUTH WAS LOCATED AT (27,19)

(j)
Fig. 4 (continued). (j) Successful embedding under random noise.
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Fig. S. Example of. image-matching experiment using a terraini scenie. (a) Reference for terrain.
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Fig. 5 (continued). (b) Embedding of reference in sensed image for terrain.
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posed a rigid template which is correlated at the dif-
ferent positions of the sensed scene in order to get the
local evaluation array. The correlation is performed only
at the indicated points of the template. Reproduction
difficulties make it hard to see the intensities of these
enclosed points. For "Vegetation 1," all the points are
of intensity 40, for "Vegetation 2," 20. For "Urban," the
points were randomly assigned intensities of 25 and 35,
and so on for the other pieces.
The terrain-matching experiments represent a con-

tinuing area of investigation. Our current efforts are
primarily directed toward obtaining a satisfactory set
of primitives which can be used as the basis for reference
component description. In low-noise experiments, with
limited geometric distortion, the simple descriptions
(i.e., ad hoc shape and texture components linked by
springs) produced correct embeddings. Experiments
under more severe conditions remain to be performed.

Implementation Details
In all of the face and terrain experiments presented

in this paper, the springs were assigned the values

0g

gij(Xj -xi) = q

t oo,

if A < row (xj-xi) < B and

C < column (xj- xi) < D

otherwise.

The values A, B, C, and D were typically set by taking
a number of sample pictures and determining the small-
est box encompassing the variation in the relative posi-
tion between the components i and j. A subroutine was

written to perform this task and automatically set the
derived parameters into the LEA.

In our current implementation, for a typical 35 X39
(face) picture, we require 13 s to compute all the
L(EV)A's, and 35 s to execute the LEA (these times
include picture input from a disk library, and storage
of results on the disk). Most of the programming is in
Fortran, and the computer is-an IBM /360/40 (the addi-
tion instruction on the 360/40 executes in 11.88 ,s).
Total core and disk storage in bytes for all arrays is

M(4f+2h) and NM(f+2h), respectively, where M, N,
f, h are the number of resolution cells in the sensed
image, the number of L(EV)A's, the amount of core

needed for a floating point number, and the amount of
core required for a (small) integer. For a typical picture
in the face experiments (M=1600, N=8, J=4, h=2),
these requirements woi-k out to appr-oximately 32 K
bytes of core, and IOOK bytes of disk storage.

DISCUSSION

Many, though by no means all, visual objects can be
described by breaking down the object into a number of
more "primitive parts," and by specifying an allowable
range of spatial relations which these "primitive parts"
must satisfy for the object to be present.
As an example, suppose we want to describe a frontal

view of a standing person. This visual object could be

decomposed into six primitive pieces: a head, two arms,
a torso, and two legs. For this visual object to be present
in an actual picture, it is required that these six primi-
tives occur (or at least that some significant subset of
them occurs), and also that they occur within a certain
spatial relationship one to the other-that is, the legs
should be next to each other, and below the torso; the
torso should be between and below the tops of the two
arms; and the head should be on top of the torso.

It may be noticed that in the previous two para-
graphs, we implicitly separated the local aspects from
the global aspects of the description; the local aspects
are the primitive parts of the picture, and the global
aspects are the spatial relations between these parts.
While at first glance it does not seem unnatural to make
this separation, in practice there is a frequently encoun-
tered difficulty, that is, the feedback between thWe local
and the global.
To illustrate this difficulty, let us go back to the ex-

ample of the view of a standing person. Any method
which detects torsos on a local level (that is, a method
which detects torsos without using any knowledge of
the positions of nearby arms and legs) might very well
detect several torsos in a picture. In fact, the actual or
"true" torso may be one of the weaker of the torsos
detected by the method; it may even happen that the
true torso is not detected at all. What does determine
the position of the true torso is the position of the true
arms, legs, and head. But, unfortunately, the reverse is
true. The positions of, say, the true arms depends on
the position of the true torso. Thus, the possible position
of each piece affects the possible position of each other
piece, making for a circular type of dependency.

It seems that whatever the visual object is, whenever
we try to separate the global and the local, the same
circular dependency occurs. Many times attempts to
recognize visual objects described in such a way involve
alternating between local and global analysis, heuristics,
backup procedures, etc.
One conceptual way of avoiding this circularity is to

evaluate simultaneously a complete interpretation of the
picture; e.g., in the example given above, we would look
at, and evaluate, complete configurations of head, arms,
legs, torso, etc. The best complete interpretation could
then be chosen. This approach, however, requires that
we make an infeasibly large number of evaluations. It
was just this computational problem that in the first
place led to the decomposition approach.
The implication of the above discussion is that, in

general, we cannot hope to decompose the global evalua-
tion problem into a number of smaller independent prob-
lems, but rather must use something akin to the simul-
taneous evaluation, taking advantage of any reduction
in total variable interdependency to reduce the required
number of such evaluations.

In this paper, we accomplish this through the follow-
ing machinery. First, an embedding metric is presented
which sets the framework for evaluating how well any
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composition of primitive picture pieces (parts of the

decomposed picture) matches the desired composite

picture. Second, a sequential optimization (dynamic

programing-type) algorithm is developed which takes

advantage of the decomposition to reduce drastically

the computational requirements (our computational
requirements grow linearly with the size of the picture,

rather than exponentially). The contribution of this

paper is the simultaneous offering of the above two com-

ponents and their suitability for application to a wide

class of pictorial objects.
In addition to the image-matching application, which

was the center of most of the development in this paper,

we have also attempted to establish the utility of the

representational aspects of the embedding metric for

general picture description applications.
The work presented here is a continuation of the

investigation described in [1] and [2], where Fischler

uses sequential optimization for matching two-dimen-
sional scenes, introduces the generic form of the em-

bedding metric elaborated on here, and presents the con-

cepts of coherent segmentation, arbitrary serialization,
and sequential constraints. The relation of the heuristic
embedding problem to formal decision theory is also

discussed. The only other paper in which sequential
optimization is applied to a broad class of problems in-

volving two-dimensional scenes is where Martelli and
Montanari [4] present a metric and matched algorithm

for smoothing pictures. Kovalewsky [5 ] and Montanari
[3] have applied dynamic programing to the detection
of (one-dimensional) line-like pictures. Reference [3] is
an outstanding paper, in which Montanari provides
much insight into the characteristics of sequential opti-

mization. Both Kovalewsky [5 ] and Montanari [3]
comment on the representational aspects associated
with their optimization procedures. An embedding met-

ric conceptually very similar to the one given in [1 J, [2 ],
and this paper is discussed in a broad and interesting
work by Bremermann'0 [121 with respect to its poten-

tial use in character recognition, speech recognition, and

control of effectors (e.g., manipulators).
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