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Abstract

In this paper we introduce and experiment with a frameworkgarning local per-
ceptual distance functions for visual recognition. Weteadistance function for
each individual training image as a combination of elementary distances between
visual features. We apply these combined local distancetifums to the tasks

of image retrieval and classification of novel images. OnGladtech 101 object
recognition benchmark, we achieve 59% recognition usingrdifing images,
which matches the best published performance by Zhang, et al

1 Introduction

Visual recognition poses many challenges for machine iegrechniques. Two particularly note-
worthy ones are:

(1) There is a large number of diverse classes with largadtdass variation. Estimates of how many
categories can be distinguished by humans range from 3@gQ@00,000, and that is before we
consider the identification problem, for example distisfimng among the thousands of faces with
which we may be familiar. The variation in a category can besterable due to pose, lighting and
internal articulation as in human or animal figures.

(2) Distances measured between shape features often grmeahingful for small distances. It is

generally accepted that the most important cue for visuageition is shape. Embedding visual
shape into a global vector space is problematic, but losadlymight expect a friendlier manifold

structure. It is convenient to capture this local structayeneans of a local “perceptual distance”
function around an exemplar image.

A central goal of this paper is to develop and experiment wittamework for learning such local
perceptual distance functions in the context of visual ge@n. There will be as many of these
as there are exemplar images, and for a given exemplar intagéistance function is trained by
the guiding principle that the perceptual distances totpesexamples (in the same category as the
exemplar) should be smaller that the perceptual distamceedative examples (from all other cat-
egories). A distance function for a particular exemplao¢dl image”) is a linearly weighted com-
bination of elementary feature distance functions, eaclitoéh is based on comparisons between
image patches. We learn these weights using a variant ofotigtrained optimization formulation
proposed by Schultz and Joachims [9] for relative compariaga.



Using these local distance functions, we address applitatn image browsing, retrieval and clas-
sification. We show results on the Caltech 101 object red¢imgnbenchmark, that has now become
a de facto standard for multi-category classification. The clasdiicaperformance on this bench-

mark is 59% using only fifteen exemplar images per categohjclwmatches the best published
recognition rate in [12].

2 Visual Features

The rest of the paper presents a method for learning lodalrdie functions for a set ébcal images,

and using those local distance functions for ranking, ee#tli, and classification. Our method is
general in that it can be used with any feature type. Onegtinesf the method is that, for a given
focal image, it chooses the features that best capture ithitasty of that image to other images.
Patch-based features are an obvious choice, in part bettaeiséocality allows our algorithm to
choose the pieces of the image that are most salient. Anethangth of the method is that it
naturally allows for the combination of different types effures. To demonstrate this, we use a
combination of shape and color patch-based features.

Many papers have shown the benefits of using filter-based gattures such aSFT [7] and
geometric blur features [1] for shape- or texture-based object matchimjraoognition [6][4][1].
We chose to use geometric blur descriptors, which were ug&thaing et al. in [12] in combination
with their KNN-SVM method to give the best published resalighe Caltech 101 image recognition
benchmark. Like SIFT, geometric blur features summarizented filter responses within a patch
of the image, but are designed to be more robust to affineftnanation and differences in the
periphery of the patch. For a full description of geomettigldescriptors, see [1]. In previous work
using geometric blur descriptors on the Caltech 101 datf FEt2], the patches used are centered
at some number of edge points sampled from the image, angésadare computed on patches of a
fixed scale and orientation. We follow this methodology a#i,weough one could use an interest
point operator to determine scale and orientation from llewel information, as is typically done
with SIFT features. We use two different scales of geométric features, the same as used in [12].
The larger uses a patch radius of 70 pixels, and the smaksr aipatch radius of 42 pixels. Both
use four oriented filters and 51 sample points, to give featwith 204 dimensions. As is done in
[1], we default to normalizing the feature vector so thatEhenorm is equal to one.

For color, we computed color histograms for eight-pixeiuagatches centered at edge pixels in the
image. Any “pixels” in a patch that were off the edge of the gmavere counted in a “undefined”
bin, and we converted the HSV coordinates of the remainimgipto a Cartesian space where the
direction is value andz, y) is the Cartesian projection of the radial hue/saturatiomedisions. We
divided the(x,y) space into ari1 x 11 grid, and made three divisions in thedirection. These
were the only parameters that we tested with the color feat@nd while we could have used cross
validation to choose the best parameters, we chose notbhasaé could highlight the performance
of our algorithm without optimizing for the Caltech 101 datt. We normalize the bins by the total
number of pixels in the patch.

Our learning algorithm in the next section learns, for a gifecal image F, a weighting over
elementary distance functions which are computed betweefotal imageF and another imageé.
Again, our method is general in that any elementary distéuncetion over any image feature type
can be used, so long as it returns a non-negative value. Heemfgpcal image and any other image
7, we havej € [1, M] such elementary distance measures, and we denotelﬁaﬁh 7).2 Inour
experiments, we use an elementary distance function fér @aaur patch features. The elementary
distance function for thégth patch is the smalledi, distance between thgh feature inF and the
set of features of the same type (e.g., large geometric batufe) from the other image. Expressing
this formally, if we takepf to bejth patch feature from imagg, and{ PZ} to be the set of features

1As a post-processing step, we normalized the distances between atloeeto have the same standard
deviation as the distribution over distances between shape features innimgtimages.

2\We useF in both the superscript and as an argument to the function to emphasizéehelementary
distance function is both particular to the focal image and computed on itsrten



from Z that are of the same type ﬁ§ (e.g. the same scale geometric blur feature):

. 2
¢ (F, D)= min_/[lp] —p7|

1)

Note that this is an asymmetric distance, and that in geoerrainethod can use any distance mea-
sures, including ones that take into account geometritioekships between patches.

3 Learning To Combine Elementary Distance Functions

In this section we describe the core mechanism of our retireevd classification. We have a training
set of focal images, and for each we want to learn a distaneetifun that takes any image and
returns a non-negative number. For a focal im&gand any other imagé, we denote this function
as D7 (F,T). We could use such a function to rank any set of images witheesto the focal
imageF, and ideally the resulting ordering would rank the imagesglar to 7 ahead of dissimilar
images. The input to the learning problem will be derivedrfra rank ordering over the training
images, though the rank ordering can be very coarse, asibigriexperiments.

Naturally, we want this function to be based on the contenthefimages, and choose a linear
combination of elementary distance measures computedifimage content features, such as those
described in the previous section. The learning goal is  imon-negative set of weights that
combine thel/ elementary distance functions into one distance functidrere we denote thgh
elementary distance function computed for jtiefeature from the focal imagg by djf(]-", 7):

M
D7 (F, 1) = wadf (F,T)=(w” -d7(F,1)) 2)
j=1

We would like to emphasize that both the set of elementariaé® functions and the learned
weights are particular to the focal image We need a learning algorithm to learn the weight vector
w7 which attains the following properties: (1) the algorithirosld enforce that/j, wf is non-

negative? (2) it should generalize well from a fairly small set of trimig images, such that a novel
image that is similar to the focal image is ranked well; (33hbuld work withany elementary
distance functions between visual features; and (4) theristhgn should be able to cope with data
expressed as pairs of images that are more and less sindlathhb focal image, rather than strict
positive and negative example$.

Properties (3) and (4) led us to a formulation where the itpatir algorithm is derived frortriplets

of images, as is also used by Schultz and Joachims in [9]. Maghat we have a lexicographical
ordering over images,,Z,,...,Zy. Given that imag€; is an image “more similar” to the focal
imageF than imageZ;, we have a triple{, Z;, Z;) such that we would ideally want

D*(F,1;) > D¥(F.1;) , 3)

so that a rank ordering based on our distance function plémese two images in their correct
relative positions. In equation (2) we defined this distaiucetion to be weighted combination of
individual measures, so this condition is equivalentso” - d” (F,Z;)) > (w” - d”(F,Z;)) or
(w” -x;;) > 0, wherex; ; = d7(F,Z;) — d” (F,Z;) captures the relative rank of the triplet
(F,Z;,Z;), and is one vector in the set of training vect@r input to our algorithm. While it
would be nice to satisfy Equation (3) precisely, in practice data is very noisy by nature and it
is impossible to find weights which satisfy the constraiwtsdll possible triplets. In addition, we
would like to constrain the norm of” in order to guard from overfitting (see property (2)). We
thus cast the problem as a constrained optimization probliégma slack variable associated with
each triplet so as to allow some of the distance constrairie w/iolated. We arrive at the following

3The positivity constraint is not strictly necessary for the learning fraonkwbut is an intuitive constraint
and in practice has the effect of removing confounding features mmgiing sparsity.

“While we don't fully exploit this last property in the experiments in this pajterlows the technique to
generalize to settings where the training data does not come from a bmawgessuch as user feedback or
click streams.



maximal margin formulation which employs slack variableséach of the triplets and includes a
primal positivity constraint omw:

1
wgming-e LW O e, @
ij
s.t.: V(Z,]) GT}_I <W]:'Xi7j> > 1_§ij7§ij ZO,wksz (5)

We chose to use L2 regularization instead of the L1 to be nuimest to noise, perhaps at the expense
of increased sparsity.

The constrained optimization problem defined above is aeckasiant of that proposed by Schultz
and Joachims in [9] for distance metric learning. Howevar,setting is different from theirs in two

ways. First, their triplets do not share the same focal insaigee they apply their method to learning
one metric for all classes and instances. Second, theyeatitheir formulation by assuming that

the elements of their distance vectors fit the fatpiZ;, Z;) = (p} —pfj)2 , Wherep; is thekth
element of the feature vector for the itésfn This assumption amounts to the restrictions that (1)
each feature from our image be a single number, and (2) weusg\yal3 distance between these
features. This would appear to preclude our use of patclifiemtand more interesting distance
measures, however we have shown that this is an unnecessé#nigtion on the algorithm. Thus,
a contribution of this paper is to show that the algorithm 9 if more widely applicable than
originally presented, thus making it more useful for difftanachine vision problems.

We used a custom solver for the optimization problem, whigtson the order of a second for about
3,000 triplets. The dual optimization includes a dual valgay; ; for each triplet and a dual variable
1, which enforces the positivity constraint e . In each epoch of training, we iterate over the set
of o, ; variables that violate the KKT constraints for our probleand for each, we first increase
the dual with a closed-form update 4g;, then we updatg to project the current solution into the
feasible region. This approach is similar to the row actippraach described in [2.

4 Using Distance Functions for Browsing, Retrieval, and Clasfication

Given a set oK’ training images, we can use each as a focal infggand use the remaining — 1
images to learn the distance functién™(Fy, -). Each of theK distance functions that we learn
induces a ranking over the oth&r — 1 images. In the next few sections, we will discuss how we
can leverage this rich source of information for contergdabimage applications.

4.1 Image Rankings for Image Browsing

If we have rankings on a closed set/éfimages, we can create a simple image browsing application
that captures the similarity relationships between thessges. The user starts on a page showing
the ranking for one of thé& images. If the user clicks on any of the images in the rankimgy are
shown the ranking for that image. This allows the user togetei “image space” using the local
distance functions that we have learned. Figure 1 showswsteranking learned from a subset of
the Caltech101 data set. In our supplemental material, edge HTML pages showing rankings
for a subset of the Caltech 101 images, and the user can tatighe rankings for other images for
which we were able to supply the ranking padesWe do not have a quantitative evaluation of these
rankings, but one can get a qualitative idea of how the imhgee been organized by the learning
algorithm. These pages also serve as a nice visualizatitredéarned image similarity functions,
and are helpful as a basis for understanding how we levetegeankings for image retrieval and
classification.

5In the Appendix to the paper, included appendi x. pdf in the supplemental materials, we give the
derivation of the algorithm we used to solve the optimization.

®The number of pages is limited due to the restriction on the size of the suppiEmeterials.

"Unzip browse_l ocal nmetrics.tgz and view file:///XXX archive. ocal netrics/
br owse/ i ndex. ht m in your browser, wher&XX is the directory into which you expanded the tar file.



4.2 Image Retrieval from Distance Functions

Given the K distance functions and a new query imag@e we would like to return a listing of
the K training images in order of similarity t@. While we can use thé( distance functions
to compute the distance from each of the focal imagggo Q, these distances are on different
scales and are not directly comparable. This is becausagiyeight vectors for each of the focal
vectors are not constrained to share any properties otaemthn-negativity, and (2) the number of
elementary distance functions and the elementary furstisemselves are different for each focal
image. This challenge is a research problem unto itselff@arttie scope of this work, we employed
a combination of two simple heuristics that works surpggimwell. We hope that these heuristics
provide insight into more principled solutions.

The first heuristic attempts to rescale thefocal image distance functions to make them more
comparable. For each focal image, we divide the distancetitmby the distance to the closest
image in the learning set, thus making the smallest distémtee focal image the unit distance.
Thus, ifi ranges over the images used to learnitiedistance function, the new distance function
would beD(Fy, Q) divided byminz, 7, D(Fi,Z;). If the distance to the closest training image is
zero, then we take the distance of the closest training irtizages nonzero.

Another approach would be, for each testim&yeo compute some measure of confidence for each
focal imageF;, which could be incorporated into the score for each focalgenused to rank them
relative to one another fa@. In this spirit we developed a second heuristic which apipnaxes the
quality of the ranking of a test image relative to a focal imdxy simply counting the number of
out-of-class training images that were ranked above thertegye by that focal image® If Q is
very similar toFy, and the distance function learned 8 captures this, then there should be few
dissimilar training images ranked abog thus the larger the value, the less similar we beliéve
is to Fy, relative to the other focal images. For example, Figuredlwstthe raw distances for each
of the images to the focal image in the upper-left corner.rélaee two negative training examples
in this ranking, the lotus in the 11th position, and the sundloin the 12th position. All test images
before the 11th position would be given an error penalty ob zand the test image of the sunflower
in the 13th position would be given an error penalty of two.

These two heuristics are complementary, and we combinad ithen ad-hoc manner to generate a
score for each test image to each focal imagé;, by simply multiplying the normalized distance
by the error penalty plus one (to avoid zeros). We do not dizinely evaluate the performance
on the retrieval task, but describe in the next section howsesthese retrieval rankings to perform
classification on the Caltech101 data set. These heuristeshe weakest part of our method,
and a better algorithm for comparing new images across spadikely to even further improve
performance both in retrieval and recognition. We have é¥hrankings of the othek — 1 images

a very rich source of information about how all the trainingages relate to one another, and our
heuristics only make use of a small portion of that inforimadti

4.3 Image Classification from Image Retrieval

If we have methods for determining image similarity and perfing retrieval that perform well,
then classification can simply be a post-process on rankedva lists when labels are available
for the training data. From the scores computed between iy guage Q and each focal image
as described in the last section, we have an ordering ovetraining images. Given class labels
for the training images, we can use a nearest neighbor fitagsi assign a class label 9. In our
experiments, we use a variant of a 2-NN classifier where, iflvaot find two labels that agree in
the first three items of the list, then we continue looking ddfe list to find the first two that agree.
If there are not two that agree within the top ten items of ibie We assign the label from the first
in the list.

8If the training data isn’t in the form of in- and out-of-class examples, tivercould instead count the
number of similar-dissimilar inversions in the ranking.



5 Caltech101 Experiments

We test our approach on the Caltech101 data sét [Bhis data set has artifacts that make a few
classes easy, but many are quite difficult, and due to theritaptchallenges it poses for scalable ob-
ject recognition, it has up to this point been one ofdbdacto standard benchmarks for multi-class
image categorization/object recognition. The datasetadesiimages from 101 different categories,
with the number of images per category ranging from 31 to 80, a median of about 50 images.
We ignore the background class and work in a forced-choieeasto with the 101 object categories,
where a query image must be assigned to one of the 101 categori

We use the same testing methodology and mean recogniti@mtireg described in Grauman et.
al. [4]: we use varying numbers of training set sizes (givemiumber of examples per class),
and in each training scenario, test with all other imageshin €altech101 data set, except the
BACKGROUND_Googl e class. Recognition rate per class is computed, then aveteangess classes.
This normalizes the overall recognition rate so that thégperance for categories with a larger num-
ber of test images does not skew the mean recognition rate.

5.1 Training data

We begin with resized versions of the images. The aspedct imtinaintained, but all images are
scaled down to be arourt)0 x 300. We computed features for each of these image as described
in Section 2. We computed at most 400 of each type of feature $tzes of geometric blur and
one color), for a maximum total of 1,200 features per image.ifages with few edge points, we
computed fewer features so that the features were not onetiyndant.

A given run of the learning algorithm is always with respexbhe focal imageF;, so that if we
train with 15 images from each of the 101 classes, we run @unileg algorithm 1,515 times. For
each focal image we choose a set of more/less similar sifidetraining, and since we are learning
similarity for the purposes image classification, we usedhtegory labels on the images in the
training set; images that have the same label as the focgeraee considered more similar than
all images that are out of class. Note that our use of triglitsvs for a more nuanced training set
where an image could be more similar with respect to one inaageless similar with respect to
another, but we are not fully exploiting that in these experits.

For each focal image, we use only a subset of the full pairemabination of all similar and
dissimilar images. For clarity, we refer &l the images available for training as the “training set”
(e.g. 1,515 images if we are training with 15 images per catggand those that are used as input to
learning for a given focal image as the “learning set” fort flegal image. We want in our learning
set for a focal imageF those images that are similar to the focal image accordingn®of our
individual distance measure (F,-). For each of the/ distance measures, we take the fgp
closest images given by (F,-). If that group contains both in- and out-of-class imagesntive
make triplets out of the full bipartite match. If @l images are in-class, then we find the closest out-
of-class image according to that distance measure and iidkiplets with one out-of-class image
and theN similar images. We do the converse if allimages are out of class. In our experiments,
we usedV = 5, and we have not yet performed experiments to determindfiwe ef the choice of
N. The final set of triplets fof is the union of the triplets chosen by thé measures. On average,
we used 2,210 triplets per focal image, and mean training tuas 1 second.

5.2 Results

We ran a series of experiments, each with a different numitteaioing images per category (either
5, 10, 15, 20, or 30), where we generated 10 independent masgtits of the 8,677 images from
the 101 categories into training and test sets. We reporatheage of the mean recognition rates
across these splits as well as the standard deviations. ¥&erdeed the” parameter of the training
algorithm using leave-one-out cross-validation on a snaalllom subset of 15 images per category,
and our final results are reported using the best valug fifund (0.01). In general, however, the

®Information about the data set, images, and published results canrodolot t p: / / www. vi si on.
cal t ech. edu/ | mage_Dat aset s/ Cal t ech101/ Cal t ech101. ht m
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sunflower 12.70 lotus 12.72
sunflower (neg) 13.22 sunflower 33.2  watetlilly (pos) 13.26 stegosaurus 13.28

wateclilly (pos) 12.58

watetlilly (pos) 13.14

o

wateclilly 13.16 lotus (neg) 13.21

Figure 1. The first 15 images from a ranking induced for thefamage in the upper-left corner,
using 15 training/category regime on a subset of the Caltgtllata set. Each image is shown with
its unnormalized distance, and only those marked with (pp&)eg) were in the learning set for this
focal image. A longer version of the ranking for this image #me rest of this subset can be seen in
the supplemental materials by startingbaiowse/ i ndex. ht i .

method was robust to the choice©@f with only changes of about 1% in recognition with orders of
magnitude differences i@ near the maximum.

In the 15 training images/category setting, we performedggition experiments on each of our
features separately, the combination of the two shaperteatand the combination of two shape
features with the color features, for a total of five diffarfrature combinations. Recognition in the
color-only experiment was the poorest at 13.0%, and in drilielen of the categories were one-third
or better of test images labeled correctlyeopar ds, ai r pl anes, butterfly, car _si de,

dol lar bill, garfield, hawksbill, pizza, snoopy, stop_sign, strawberry,
sunfl ower, andyi n_yang. Note that all images in thear _si de category are black and
white, and that manpawksbi | | andai r pl ane images have blue backgrounds. The next best
performance was from the small geometric blur features ®@H1% (0.5% std), followed by the
large geometric blur features with 51.4%(.8%). Combining the two shape features together, we
achieved 58.2%40.7%), and with color and shape, reached 59.146.8%), which matches the
best published performance for 15 training images on thée€all01 data set[12]. The combined
shape and color was better than color alone for almost aboaies, excegtawksbi | |, 1 ot us,
andsunf | ower, which did not improve with the addition of shape, gmdzza, which actually
degraded!® The combined shape and color was better than the two shaedealone for 39 of
the categories, while it degraded performance for 34 of #tegories, and did not change perfor-
mance in the remaining 28. In Figure 5.2 we show the confusiatrix for combined shape and
color using 15 training images per category. Also in thatriige a graph based on that in [12] that
shows most of the published results for Caltech101 and afmipeance using 5, 10, 15, 20, and 30
training examples and all three features.

Almost all the processing at test time is the computatiorhefélementary distance functions be-
tween the focal images and the test image. In practice thghiveeéctors that we learn for our focal
images are fairly sparse, with a median of 69% of the elemsstt$o zero after learning, which
greatly reduces the number of feature comparisons perfbahéest time. We measured that our
unoptimized code takes about 300 seconds per test imagdter comparisons are computed, we
only need to compute linear combinations and compare seeress focal images, which amounts
to negligible processing time. This is a benefit of our metbmupared to the KNN-SVM method of
Zhang, et al.[12], which achieves the same recognition baterequires the training of a multiclass
SVM for every test image, and must perform all feature corspas.

1%The distance measure we use combined with the normalization of the gaohietrfeatures seems to
make the focal images from many categories look like pizza.

170 further speed up comparisons, in place of an exact nearesbieigbmputation, we could use approx-
imate nearest neighbor algorithms such as locality-sensitive hashipg drees.
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Figure 2: Average recognition rate across classes versusutimber of training examples, based on
the graph in [12]. Results from [12], [6], [8], [4], [1], [11I5], [10], [3]-

6 Conclusion

There are two main contributions in this paper. First, wenskite usefulness of simple locally-
defined distance functions for capturing similarity strwetbetween images and demonstrate that
such an approach does not necessarily overfit. This proeidedternative to the popular approach
of learning a single metric for all classes, making it bestgéited to the vision setting where variation
can be large even within a visual category. Second, we demad@shat using these local distance
metrics and a very simple heuristic, we can perform imagéexet as well as image classification.
On the Caltech 101 object recognition benchmark, we aretalalehieve a recognition performance
of 59% using only fifteen training images per category, whititches the best reported perfor-
mance. Furthermore, these results indicate that replabmgimple-minded heuristics we use to
leverage our distance functions for retrieval with morenpipled techniques would further utilize
the rich set of ranking information that we have learned amthér improve retrieval and recogni-
tion.
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