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Abstract

The majority of machine learning systems for object recognition is limited by

their requirement of single labelled images for training, which are difficult to

create or obtain in quantity. It is therefore impractical to use methods or

techniques which require such data to build object recognizers for more than

a relatively small subset of object classes. Instead, far more abundant multi-

label data provides a ready means to create object recognition systems which

are able to deal with large numbers of classes. In this paper we present a new

object recognition system named MLBoost which learns from multi-label

data through boosting and improves on state-of-the-art multi-label annotation

and labelling systems. The system is trained on images with accompanying

text and at no time is told which parts of each image correspond to which

words, and as such the process is unsupervised. Having once been trained it

is able to give segment labels and a list of descriptive words (an annotation)

for any novel image.

1 Introduction
The majority of machine learning systems for object recognition are limited by their re-

quirement of single labelled images for training, which are difficult to create or obtain in

quantity. This restriction is a major barrier towards building large scale multi-class object

recognition systems using these techniques as every class to be learned by the system

requires its own set of hand-labelled and sometimes hand-segmented training images. In

order to move forward in the field of multi-class object recognition, new techniques must

begin to utilize more abundant and easily acquirable types of data. One such type is

multi-label data, in the form of images with accompanying text. Among corpora like the

Corel image database, newspaper photograph archives with captions, stock advertising

photographs and a bevy of other sources there is more than enough data to build the next

generation of multi-class object recognizers.

In this paper we present a system called MLBoost which is able to learn enough

from 1500 or so annotated images of the form shown in figure 1 to perform labelling and

annotation on novel images with better results than a state-of-the-art recognizer of the

same type [1]. It achieves this by learning the correlation between image segments and

the accompanying text in a set of training images. Having learnt this, when given any new

image it is able to translate it into words, giving both a labelling for the segments and an

annotation for the image as a whole as shown in figure 2.



Figure 1: Typical examples of the training data for ML-

Boost. All images were taken from the Corel database

and had anywhere from 1 to 5 accompanying keywords

which described the image contents. The images were au-

tomatically segmented using Normalized Cuts [9] and a

feature vector including color, texture and other cues was

extracted from each segment for use in the learning pro-

cess. There was no correspondence given between seg-

ments and text.

Figure 2: Output from the MLBoost

algorithm. The word shown is the

most probable label for that area of the

image, however a full distribution over

the vocabulary is produced for each

segment. The words below the image

are the annotation produced by the al-

gorithm based on the segment labels.

2 Matching Words and Pictures
Visualize a system which sees various images that contain a large segment of solid blue

and that always have the word “sky” as one of their labels. Over time, it would be able

to learn that the features of those segments and the word “sky” are both different expres-

sions of the same underlying concept, and is then able to translate between them. The

algorithms and techniques which pertain to this kind of learning come largely from the

machine translation community, and have been adapted for use in computer vision by

Barnard et. al [1, 4] who show it to be quite effective at a variety of vision tasks. The

initial model they used was inspired by [7], though a full range of models is evaluated

in [1] with recent work focusing on latent Dirichlet allocations and probabilistic latent

semantic analysis [10, 2].

Barnard et al.’s method in [1] can best be understood by one of the more straight-

forward models presented there, I-2, and it is that model that we will be describing here

for the use of comparison and later for improvement. Their method is designed to work

with feature vectors, or “blobs”, representing the segments of an image. These are related

through annotations to associated words which describe the image as a whole. The ac-

curacy of the segmentation method isn’t vital provided that it is consistent, allowing the

use of automatic segmentation techniques such as normalized cuts [9] to prepare the data,

regardless of their lack of accuracy. Once an image has been segmented, a feature vector

is extracted for each segment containing color (mean and variance of RGB, Lab, and nor-

malized r/(R+G+B) and g/(R+G+B)), texture (mean and variance of 16 Gabor-like filter

responses) and other cues (shape, position, size, etc.) as described in [6].

To statistically link blobs with words, it is assumed that there are hidden factors (con-

cepts) which are responsible for generating both the words and blobs associated with that

factor. By generating both words and blobs, the concepts can then be used to link the

two, learning how they relate. The observations (image and associated text) are assumed

to be generated from multiple draws from the hidden factors, as otherwise all possible

combinations of words and blobs would need to be modelled. The joint probability of a



particular blob, b, and a word w, is modelled as

P(w,b) = ∑
c

P(w|c)P(b|c)P(c) (1)

where c indexes over the concepts, P(c) is the concept prior, P(w|c) is a frequency table,

and P(b|c) is a normal distribution over features. The normal distribution over features

is assumed to have diagonal covariance to simplify calculation and avoid overfitting. The

probability of the observed data, W ∪B, given the model, is then:

P(W ∪B) = ∏
b∈B

(

∑
c

P(b|c)P(c)

)

∏
w∈W

(

∑
l

P(w|c)P(c|B)

)

(2)

where W is the set of all annotated words, B is the set of blobs and P(c|B) ∝ ∑b P(c|b),
normally limited to the N largest blobs (typically 8 or 10).

This model is fit using the Expectation/Maximization technique [3] treating the con-

cepts as hidden data. This results in the following learning equations for Expectation:

P(c|b) ∝ P(b|c)P(c) (3)

P(c|B) ∝ ∑
b∈B

P(b|c)P(c) (4)

P(c|w,B) ∝ P(w|c)P(c|B) (5)

and Maximization:

P(c) ∝ ∑
d

[

∑
b∈B

P(c,b)+ ∑
w∈W

P(c|w,d)

]

(6)

µc =
∑b P(c|b)b

∑b P(c|b)
(7)

σc =
∑b P(c|b)(b−µc)(b−µc)

T

∑b P(c|b)
(8)

P(b|c) ∝ N (µc,σc,b) (9)

P(w|c) ∝ ∑
d

P(c|w,B) (10)

where d indexes the training documents and N is a multivariate normal distribution.

This is a very effective system but it is limited by the fact that it is forced to perform

well overall on the entire data set by the training process. As a result, the concepts which

are learned tend to relate textually to the words which occur most often in the data (e.g.

sky, water, sun) and visually to the easiest to recognize segments (e.g. solid blue, textured

green, yellow circles.) This effect can be seen in figure 4, where the noun-based model

predicts the entire image as “sky”. While this produces good results for a large subset of

the data and thus is optimal behavior for the system, no concepts remain to represent the

many words and image segments that are less prevalent. A way to somehow account for

this forgotten data would significantly improve performance of the algorithm.

3 A Multi-label Boosting Framework
Boosting combines several weak learners to create a single system which is better than

the sum of its parts. The iterative process tells each subsequent learner to concentrate on



the subset of data which has yet to be learned by the previous learners. In this way, it is an

ideal solution to the weakness of the system just presented; however, no boosting system

has ever been built which is able to boost multi-label learners of this variety. In this paper

we present such a system, MLBoost.

3.1 Multi-class Boosting
In its most basic form, Adaboost deals with binary classification (i.e. something is/isn’t

a member of a class). However, Freund and Schapire provide two multi-class versions of

Adaboost in [5]. Our multi-label framework is an extension of the second version, which

dealt with learners that were evaluated in terms of pseudoloss. The concept of pseudoloss

is quite well suited to dealing with the data ambiguity problem at hand. It was originally

defined as

plossq
.
=

1

2

(

1−h(xi,yi)+ ∑
y 6=yi

q(i,y)h(xi,y)

)

(11)

where q is a label weighting function, xi is a data input, yi is the correct label for that

data, and h is a hypothesis returned by a weak learner which assigns a certainty value

between 0 and 1 for each label given the input. The label weight function, q, deserves

some mention. This function measures the degree to which the weak learner mistakes xi

for being a member of another class. It is calculated such that ∑y 6=yi
q(i,y) = 1. In this

way, if the certainty sum for every label (except the correct label) is 1 then the pseudoloss

is 1, and if the classifier is perfect (the correct label has a certainty of 1 with all others

0) the pseudoloss is 0. The place of q in the algorithm is to guide the learner towards

learning certain classes more thoroughly than others, which enables the boosting system

to concentrate on classes which are hard to classify and underrepresented.

Our situation is slightly different from that of this initial formulation. Whereas the

original deals with data items with single labels, we are dealing with data items which

have multiple labels. The learner must maximally predict the correct labels and minimally

predict the incorrect labels, and we have modified the pseudoloss in a straightforward

manner to reflect this:

plossq
.
=

1

2

(

1−
∑y∈Yi

h(xi,y)

|Yi|
+ ∑

y∈Y−Yi

q(i,y)h(xi,y)

)

. (12)

3.2 Multi-Label Weak Learners
Using this modified pseudoloss as a basis, our modified form of Adaboost, named ML-

Boost, is presented as algorithm 1. It should be noted that there are two novel and key

differences between this algorithm and Adaboost.M2. As previously mentioned, the first

difference is the modification to the calculation of pseudoloss. The second difference is

that the recalculation of the weight vector has been modified to incorporate multi-label

output. The weight vector is updated based on whether a particular label is a member of

the symmetric difference between the correct annotation for a particular input, Yi, and the

annotation of that input, Ai, which is the set of elements y for which ht is maximally con-

fident, as done by Schapire and Singer in [8]. For all labels y which are incorrectly given

by the hypothesis in the annotation Ai, the document specific weight, wi,y increases by a

factor of K, the training speed constant. For all other y, the weight decreases by a factor of

K. In this way, documents which are consistently labelled correctly decrease in training

significance exponentially while documents which are consistently annotated incorrectly



Algorithm 1 MLBoost

1: Input:

1. documents 〈(x1,Y1), . . . ,(xN ,YN)〉 with labels Yi ⊂ Y = 1, . . . ,k
2. distribution D over the documents

3. multi-label weak learning algorithm MultiWeakLearn

4. integer T specifying number of iterations

5. training speed constant K

2: Initialize the weight vector: w1
i,y = 1

3: for t = 1 to T do

4: Set W T
i = ∑y/∈Y wt

i,y;

qt(i,y) =
wt

i,y

W t
i

for y /∈ Yi; and set

Dt(i) =
W t

i

∑N
i=1 W t

i

5: Call MultiWeakLearn, providing it with the distribution Dt and label weighting

function qt ; get back hypothesis ht : X ×Y → [0,1].
6: Set εt equal to the pseudoloss of ht (see equation 12)

7: Set βt = εt

(1−εt )
.

8: Produce an annotation set Ai for each xi where |Ai| = |Yi| and contains the most

likely labelling elements y with regard to ht .

9: Set the new weights vector to be

wt+1
i,y =

{

Kwt
i,y y ∈ Ai ⊖Yi

wt
i,y

K
otherwise

for i = 1, . . . ,N,y ∈ Y −Yi.

10: end for

11: Output the hypothesis

h f (x,y) =
T

∑
t=1

(

log
1

βt

)

ht(x,y)

.



increase in training significance. Also, those which are consistently annotated incorrectly

with the same words increase in training significance exponentially. In our experiments

we used a value for K of N1/T , where N is the number of training documents. Our choice

of K was made such that it was difficult for a single document to dominate all training by

being annotated incorrectly every time with the same word until the end of the training

run.

In keeping with the original form of this algorithm, the learner to be boosted, Multi-

WeakLearn, need only produce hypotheses with pseudoloss consistently below or above

1/2 with respect to the distribution over the documents D and the label weighting func-

tion q with which it was presented. However, MultiWeakLearn must be able to learn

from multi-label data. Because of this, the candidate learning systems tend to be far more

complex than in the supervised case, where often simple decision stumps are all that is

required [11]. Previous attempts at boosting more complex learners for speech recogni-

tion [12] have shown that boosting is still useful in these circumstances, though the re-

sulting array of hypotheses can be time- and space-intensive for calculation and storage,

respectively. In our initial exploration of this topic we disregarded this aspect in favor of

exploring the usefulness of the technique, however future work will need to concentrate

on ways to improve performance and decrease time and space complexity.

4 A Boostable Multi-Label Vision System
Before we could use this boosting framework to create a vision system, we had to produce

a candidate for MultiWeakLearn. Our candidate for MultiWeakLearn in this paper is

a novel modification to the method used by Barnard et. al in [1] and described in section

2. In the learning equations, we make several key insertions to bias the learning towards

subsets of the data and against particular labels as determined by the distribution D and

label weighting function q provided by the boosting system as described in algorithm 1.

We use D to influence the clustering of blobs by giving more weight to blobs in em-

phasized documents during Maximization. D(i), is added as an addition weight to P(c|b)
in equations 7 and 8. We use q, or rather the value 1− qt(w, i) to deemphasize incorrect

labels when calculating P(c|w,B) in the Expectation (specifically, equation 5).

This system provides a hypothesis to the booster which calculates a vocabulary distri-

bution for a document using a novel weighted voting scheme. We introduced this scheme

due to problems inherent in the original annotation system provided by Barnard et. al,

which would produce a P(w|B) as

P(w|B) ∝ ∑
b

P(w|c)P(c|B). (13)

Imagine an image of a plane flying in the sky. The blue segments of sky give a large

contribution to the solid blue, “sky” concept. The one or two segments depicting the

plane give a smaller contribution to the textured gray, “plane” concept. The resulting

annotation is heavily biased towards the first concept and contains words like “sky” and

“water” but not “plane”, even though that segment was correctly labelled.

We propose the following solution: for each blob, the words in the vocabulary are

ranked with regard to their likelihood as a labelling for that blob as determined by P(w,b).
Then a vote is cast for each word with weight vw = 1

2rw , where rw is the rank of a particular

word (i.e. rw = 0 for the first ranked y and |Y |−1 for the last). The resulting collection of

votes is then normalized to produce a distribution P(w|B) over the vocabulary.



Figure 3: Annotation Performance on training and test data. The training subset consisted of 1667

images, or 90% of the data, with the test subset consisting of the remaining 10%, or 214 images.

The data for word frequency comes from simply producing an annotation of the five most common

words in the training data set for each image. The data from I-2 comes from our implementation of

the linear form of the model in [1]. As expected, MLBoost has fewer “bad” annotations (i.e. the

first two bins), and the stressing of overall performance in the algorithm introduced by taking the

mean of the confidence scores for the correct labels results in more “good” annotations (i.e. the last

three bins), particularly those which are almost entirely correct. Score is determined as the number

of correctly annotated words from an algorithm divided by the number of keywords for an image.

5 Results
We trained the algorithm using a subset of 1881 images from the Corel database. The

state-of-the-art system used for comparison is an unmodified implementation of model

I-2 from [1] with linear topology. Our system, MLBoost, was implemented as shown in

algorithm 1. The models were evaluated on two tasks: annotation and labelling. Each

was trained on roughly 90% of the data, or 1667 images, and a test set of the remaining

214 images was used for evaluation of the model’s generalization ability.

5.1 Annotation
Annotation provides a straightforward means to determine the effectiveness of the models

under study. The baseline for performance is difficult to set; however, in [1] a word

frequency distribution extracted from the training data has proven to be a rough equivalent

of the “oblivious” algorithms used elsewhere in the literature for a similar purpose. This

annotation simply consists of the top N words according to usage, where N is the size of

the correct annotation for an image. Due to the nature of the Corel database, the keywords

provided as correct annotations in our data contain many of the same words (e.g. “rock”,



“sky”, “close-up”), allowing such a method of annotation to do quite well. To perform

better than this, a learner must be gaining knowledge from co-occurrence with image data,

not simply word usage statistics, and as such it serves well as a baseline.

Annotations are produced as described in section 4. The annotation performance is

shown in figure 3 for annotations produced using the word frequency and the two models.

As expected, MLBoost has fewer “bad” annotations (i.e. the first two bins), and the

stressing of overall performance in the algorithm introduced by taking the mean of the

confidence scores for the correct labels results in more “good” annotations (i.e. the last

three bins, particularly the second to last bin.)

5.2 Labelling
Labelling is a difficult task as it is essentially object recognition. The segments produced

by normalized cuts tend not to be optimal for the task, though this problem is not endemic

to the algorithm as automatic segmentation remains an open problem. That aside, the

system produced by Barnard et al. is capable of performing rather well on the task, and

as such we can boost that performance. Automatic evaluation of the task is impossible,

as the matching between segments and keywords is an unknown quantity. In order to

do a thorough evaluation of labelling performance, hand labelling with multiple labels of

each segment in every image would have to be performed. While such an evaluation is

desirable, it is not within the scope of this paper.

Presented in figure 4 are 3 examples each from I-2 on the left and from MLBoost on

the right. The automatic segmentations of the images are shown in red, and the top-scoring

label for each of the 10 largest segments is displayed. The five words at the bottom of each

image are the annotating words produced for the image ordered from left to right in terms

of likelihood, with bold font indicating those which are correct. It should be noted that

the correct annotations did not always have 5 words, though 5 was the maximum. All five

maximally-predicted words are shown to give insight into the nature of the distribution.

Note that I-2 is achieving annotation performance by taking the easiest path in terms of

segment labelling, whereas MLBoost is correctly labelling the segments and achieving

equal or better annotation performance on the same image input.

6 Conclusion
The MLBoost algorithm has proven to be effective at improving the performance of a

candidate weak multi-label learner and has shown better results at both image annota-

tion and labelling. As it is able to learn from multi-label data, it is also able to perform

multi-class object recognition in addition to input labelling, and as such is a promising

framework on which to build next-generation object recognition systems.

It is unclear without further exploration whether the improvement boosting provides

over the I-2 model is due to that model’s inherent weaknesses which may not be present in

better statistical modelling paradigms such as the others presented in [1] or probabilistic

semantic analysis as seen in [10]. Future research will concentrate on whether boosting

indeed provides a boon with these more complex systems.

We are also interested in exploring the uses of boosting as a method of combining

different kinds of learners. For example, a color-based learner and a texture-based learner

could each concentrate on the classes which are easiest to identify in their space and

the booster could choose one or the other at each stage of the algorithm according to

performance. It could also choose between different modelling paradigms based on which

best models a particular region of the target space.



Figure 4: Labelling performance. The labellings on the left come from model I-2, on the right from

MLBoost. The automatic segmentations of the images are shown in red, and the top-scoring label

for each of the 10 largest segments is displayed. The five words at the bottom of each image are

the annotating words produced for the image ordered from left to right in terms of likelihood, with

bold font indicating those which are correct. Note that I-2 is achieving annotation performance by

taking the easiest path in terms of segment labelling, whereas MLBoost is correctly labelling the

segments and achieving equal or better annotation performance on the same image input.
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