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Abstract

Contextual information is often essential for visual recog-
nition, but the design of image-understanding systems
that effectively use context has remained elusive. We
describe some of our experiences in attempting to em-
ploy contextual information in computer vision systems.
By making explicit the built-in assumptions inherent in
all computer vision algorithms, an architecture can be
designed in which context can influence the recognition
process. This paper describes such an architecture for
context-based vision (CBV).

1 Introduction

It is generally accepted that the surroundings of
an object may have a profound influence on, and in
some cases, may be necessary for, visual recognition
of the object. What is not so well established is how
to design computer vision systems that can exploit
such contextual information.

When a human observes a scene, or even stud-
ies a photograph, he normally has at his disposal a
wealth of information that is not captured by the
image alone. For example, if Bob shows Alice some
photographs he took, her knowledge that Bob re-
cently vacationed in Hawaii may help her to recog-
nize that the photos were taken there. Any knowl-
edge that Alice has about Hawaii may be useful
for recognizing the content of the scene (e.g, that
the amorphous landform is actually Diamond Head,
and that the vegetation is palmetto bushes and not
agave cacti).

An observer can also infer information about the
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Figure 1: An image in which the use of context is
critical to the recognition of some objects.

scene that is then useful for interpreting other parts
of the image. For example, given an outdoor scene,
usually one can readily determine where the sky is,
which direction is vertical, what the weather condi-
tions are, and whether any man-made objects are
visible. This information forms part of the context
that is available for interpreting the remainder of
the scene.

An image such as shown in Figure 1 illustrates
the power of contextual information. The inset, a
magnified portion of the larger image, displays an
object that is difficult to recognize. When the same
object is viewed in the context of the intersection
of city streets (as in the large image), it is readily
recognized as an articulated bus.



In this paper, we describe some of our experi-
ences in attempting to employ contextual informa-
tion in computer vision systems. By making explicit
the built-in assumptions inherent in all computer
vision algorithms, an architecture can be designed
in which context can influence the recognition pro-
cess. This paper describes such an architecture for
context-based vision (CBV).

The first half of the paper summarizes the types
of contextual information that are available in
image-understanding systems and describes some
roles that context can play in the interpretation
process. The second half reviews a previously con-
structed context-based architecture, CONDOR; de-
scribes some extensions that are necessary to ex-
tend its applicability to semiautomated image un-
derstanding (IU); and presents some empirical re-
sults of its use in extracting cartographic features.

2 Context-Based Vision

We use the term contextual information, or context
for short, in the broadest sense — to denote any
and all information that may influence the way a
scene is perceived. Thus, the camera geometry, the
image type, the availability of related images, the
urgency of observation, and the purpose of image
analysis, are all part of the context. A computer
vision system, like a human, should be able to use
all types of context.

Many authors have used contextual information
either implicitly or explicitly in their IU systems,
but few have made the representation and use of
context a central design feature [4, 5, 7, 13, 21].

The effective use of contextual information can
be addressed by considering the design of an over-
all system architecture, rather than by focusing on
individual algorithms. In our view, this can be ac-
complished by structuring a computer vision sys-
tem as a composite of many individual algorithms.
The contextual information, including the percep-
tual task and the available imagery, can be used
to choose the algorithms most appropriate for each
subtask, and can form the basis for evaluating their
results. The algorithms can perform independently,
but are able to interact through the context that all
are controlled by and all contribute to.

The concepts described in this paper are illus-
trated by examples from two architectures we have

designed:

e CONDOR [17, 18, 19] is a system that analyzes
ground-level outdoor imagery of natural en-
vironments in the context of a mobile robot
application. CONDOR contains an elaborate

mechanism for recognizing and labeling nat-
ural objects automatically. Because natural
objects, unlike man-made objects, are difficult
to recognize without consideration of context,
analysis of these scenes demands an architec-
ture that makes strong use of contextual infor-
mation.

e The second architecture is being developed
as part of a system for site-model construc-
tion using overhead imagery in the RADIUS
Project [8]. Unlike CONDOR, this system is de-
signed to be semiautomated — a fact that has
implications for both the way in which con-
text can be employed, and for the availability
of contextual information. Being a semiauto-
mated design, it relies upon a human operator
to replace some of the machinery incorporated
in CONDOR and exploits additional contextual
constraints supplied by the operator.

3 The Need for Context

The technical problems in using context involve the
identification of appropriate representations for the
relevant knowledge and the design of an architec-
ture that can effectively invoke this knowledge. A
context-based architecture for image understanding
must have (among other things) a means for enforc-
ing the assumptions of IU algorithms and a means
for accessing relevant information.

3.1 Enforcing Assumptions

Every image-understanding algorithm, by necessity,
contains numerous built-in assumptions that limit
its range of applicability. For example, some edge-
finders work only on binary images, some stereo al-
gorithms cannot handle occlusions, and some road-
finders are confounded by strong shadows.

If the results of these algorithms are to be re-
lied upon, the algorithms must not be employed in
situations for which their designers did not intend
them to be used. It is the context of invocation that



dictates the suitability of an algorithm for a partic-
ular task. By explicitly encoding the assumptions
and inherent limitations of IU algorithms, one has
the potential to control the algorithms by reason-
ing about the context. Representing assumptions
explicitly and matching them to the particular cir-
cumstances is one of the keys to using contextual
information in a computer vision system.

3.2 Accessing Nonlocal Information

Most IU algorithms also require the use of nonlocal
information — data outside the immediate sphere
of computation — to assist the interpretation or to
control the processing flow. Examples include pixel
data that are outside some local processing window,
additional images of the same scene, prior facts or
expectations that are stored in a map or database,
and generic knowledge about the appearance, func-
tion, or purpose of objects in a scene. Such infor-
mation is used by many IU algorithms to compute
parameters, to guide search, to cue recognition pro-
cesses, or to reason about the consistency of an in-
terpretation.

IU algorithms must have access to nonlocal in-
formation to aid interpretation. Providing direct
access to relevant nonlocal information is another
key to using contextual information in a computer
vision system.

4 Types of Context

Before describing how contextual information can
be represented and used, it is useful to take inven-
tory of the kinds of context that could be consid-
ered.

Figure 2 depicts a schematic view of an IU algo-
rithm as a black box. Its explicit inputs are a set
of images and some parameters, but it is invoked in
the context of an assigned task, a database of facts
about the world, and a knowledge base from which
additional information about the world can be de-
duced. Some of its outputs are symbolic descrip-
tions that can also be used to augment the database
or knowledge base, or to assign additional tasks for
realizing behaviors.

We have found it convenient to divide the range
of contextual information into three categories. Ad-
ditional semantic knowledge may involve contextual
information from all three categories.

task
world data
world knowledge
S |
images U -
—» scene description
parameters

Figure 2: A schematic diagram of an IU algorithm
embedded in a vision system.

Physical context — information about the vi-
sual world that is independent of any partic-
ular set of image acquisition conditions. Phys-
ical context encompasses a range of specificity
from the very precise “There is a tree at (342,
124)” to the more generic “This area contains
a mixed, deciduous forest.” Physical context
may also include information about the ap-
pearance of scene features in previously inter-
preted imagery and dynamic information, such
as weather conditions and seasonal variations.

Photogrammetric context — information sur-
rounding the acquisition of the image under
study. This includes both internal camera pa-
rameters (e.g., focal length, principal point,
field of view, color of filter) as well as external
parameters (e.g., camera location and orienta-
tion). We also include the date and time of
image acquistion as well as the images them-
selves.

Computational context — information about
the internal state of processing. The computa-
tional context can be used to control the pro-
cessing sequence based on partial recognition
results. Different strategies can be used when
first initiating the analysis of an image versus
filling in the details of a largely completed anal-
ysis. The assigned task, the level of automation
required, and the available hardware processes
are all construed as part of the computational
context.



It is worth noting that context may be either
established or hypothetical. Tentative conclusions
such as “The sky is not visible in this image,”
hypothesized facts about the world such as “Assum-
ing that no buildings with peaked roofs are at this
site” can be treated as ordinary context to generate
hypothetical conclusions.

Just what constitutes contextual information is
highly dependent upon the domain of application
and the goals of the image-understanding system.
CONDOR and RADIUS both involve the delineation
and recognition of features of the outdoor world
from multiple images. Tables 1-3 detail the types
of context used or usable in these applications.

The information in the tables was compiled by
examining about one hundred IU algorithms em-
bedded in coNDOR. That list was then augmented
by considering additional algorithms that appear
to be relevant to the RADIUS site-model construc-
tion application. The algorithms considered range
from edge-finders [1] to image-segmentation [12], to
stereo compilation [2], to snakes [10], to complete
object recognition systems [3, 20]. The associated
parameters and implicit assumptions for each algo-
rithm were tabulated.

and

Contextual information may come from a variety
of sources, depending on the nature of the appli-
cation. Some representative sources of contextual
information are

e Database — Information for use by a vision sys-
tem may have been previously compiled and
stored. Geometric object models, map data,
and iconic texture maps are examples.

e Image header — Information about the im-
age acquisition is often stored with the image.
Camera models, image size and type, and time
and date of acquisition are examples.

o Derived — Results of earlier IU computation
are a valuable source of additonal information
about a scene.

e User — In an interactive or semiautomated sce-
nario, the human operator is also a source of
information that can provide context to IU al-
gorithms. This information could range from
a general characterization of the image (e.g.,
urban environment) to a precise, manual ex-
traction of individual features.

Table 1: Physical Context

Geometric models of roads, trails, fences,
trees, rocks, buildings, railroads, towers,
fields, etc.

3D Outline

Location

Geometry

Orientation
Albedo
Material type

Photometry/
Radiometry

Reflectance
Surface properties

Previous image snippets

Mumination  Sun (azimuth, elevation angles)

Haze
Cloud cover
Shadow contrast

Weather Temperature

Current Precipitation
Recent Precipitation
Wind speed and direction

Season

Geography Site
Terrain type (tundra, desert, ocean, ...)
Land use (urban, rural, agricultural, ...)

Topography (e.g., Digital Elevation

Model)
Environmental events (fire, flood, earth-
quake, war, ...)

Other

Semantic properties (name, use, history,

)

5 Uses of Context

When an IU algorithm is viewed as a black box as
in Figure 3, it is apparent that there are only two
opportunities to use contextual information to in-
fluence its behavior. At the input end, context can
be used to select the best match of image data with
IU algorithms and their parameters. At the output
end, context can be used to analyze and filter the
results.

Choosing algorithms and their parameters:
Given an image and a task to be performed, it is
necessary to determine the most appropriate algo-
rithm or set of algorithms for accomplishing the
task. When the assumptions and limitations of each
algorithm have been coded explicitly, it is possible
to match their requirements with the context of the
present situation, and choose the ones that have
(at least) the potential to achieve the desired re-
sult. Similarly, a mechanism can be constructed to
compute the parameters associated with those algo-



Table 2: Photogrammetric Context
Date and time

Look angle Azimuth, elevation, roll

Footprint Portion of ground observed
Modality Infrared, color, radar, ...
Multiplicity Monocular, binocular stereo, mul-

tiple, ...

Pixel dimensions

Binary, scalar, vector, complex, ...
Ground sample distance (GSD)

Focal length, principal point, non-
perspective, ...

Image size
Image element type

Resolution

Camera model

Table 3: Computational Context

Task Interpret everything, find tanks,
model all buildings, ...

Interactivity Fully automatic, manual, semiauto-
matic, batch, continuous interaction,

Urgency Acceptable processing time

Hardware Uniprocessor, special-purpose hard-
ware, multiprocessor, ...

Processing state  Just starting, already looked, detailed
search, ...

rithms from the available context, although it may
be difficult to identify the appropriate computations
in advance.

Choosing image data: In some applications,
including the CONDOR and RADIUS scenarios, a mul-
titude of imagery is available for analysis. Choos-
ing the subset of images to use can be as critical
as the selection of appropriate algorithms. When
an algorithm is being considered for invocation, the
explicitly coded assumptions can be used to select
the images that are best suited to the extraction
task being given to that algorithm.

Evaluating results: When IU algorithms have
completed their processing, the system has pro-
duced a set of results that are best considered as
hypotheses. Analysis of the results with the ben-
efit of relevant contextual information can lead to
improved interpretations of the imagery. This anal-
ysis can take place in several ways — by ranking the
hypotheses, by comparing them, by checking their
consistency with other hypotheses or with the es-
tablished context, and so on. In each case, if the
analysis software is encoded as a collection of al-
gorithms with explicitly encoded assumptions, one
can use the context to choose the algorithms and
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Figure 3: A schematic diagram of a context-based
vision system.

control their invocation. Not only does this ap-
proach reduce unnecessary computation, but it also
simplifies software construction because each algo-
rithm need work only in some narrowly defined con-
text.

6 An Architecture for Context-
Based Vision

In the context-based vision paradigm, the invoca-
tion of all algorithms is governed by context. Rather
than having the control structure and control deci-
sions to be made hard-wired, the process is driven
by context.

CONDOR was designed as the perceptual archi-
tecture for a hypothetical outdoor robot. Given an
image and a possibly extensive database describ-
ing the robot’s environment, the system is to an-
alyze the image and to augment the world model.
CONDOR’s recognition vocabulary consists mainly
of natural objects such as trees, bushes, trail, and
rocks. Because of the difficulty of recognizing such
objects individually, CONDOR accepts an interpre-
tation only if it is consistent with its world model.
CONDOR recognizes entire contexts, rather than in-
dividual objects [17, 18, 19].

6.1 Context Sets

We associate a data structure called a context sel
with each IU algorithm. The context set identifies
those conditions that must be true for that algo-

rithm to be applicable. Efficient and effective vi-
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Figure 4: Sequence of Computation in CONDOR.

sual recognition can be achieved only by invoking
the IU algorithms in those contexts in which they
are likely to succeed.

Formally, a context set is a collection of context
elements that are sufficient for inferring some rela-
tion or applying some algorithm. A context element
is a predicate involving any number of terms that
refer to the physical, photogrammetric, or compu-
tational context of image analysis.

Each algorithm has an associated context set, and
is invoked only if its context set is satisfied. A con-
text set is considered to be satisfied only if all its
context elements are satisfied.

As an example, consider a simple operator that
extracts blue regions to find areas that could be
labeled “sky.” A context set for this operator might
be

{ image-is-color, camera-is-horizontal, sky-is-clear,
time-is-daytime }

The blue-sky algorithm would be unreliable if it
were employed in anything but this context.

6.2 Approach

The CONDOR architecture employs three types of
algorithms controlled by context sets, as illustrated
in Figure 4:

o Type I context sets control IU algorithms that
produce candidate (hypothetical) labeled re-
gions.

o Type Il context sets control algorithms that
compare two candidates and determine if one
should be preferred over the other. This step
is mainly necessary to limit the combinatorics
of finding mutually consistent candidates.

o Type III context sets control algorithms that
check if a candidate is consistent with an
emerging world model.

For each class in the active recognition vocab-
ulary, all Type I context sets are evaluated. The
operators associated with those that are satisfied
are executed, producing candidates for each class.
Type II context sets that are satisfied are then used
to evaluate each candidate for a class, and if all
such evaluators prefer one candidate over another,
a preference ordering is established between them.
These preference relations are assembled to form
partial orders over the candidates, one partial order
for each class. Next, a search for mutually coher-
ent sets of candidates is conducted by incrementally
building cliques of consistent candidates, beginning
with empty cliques. A candidate is nominated for
inclusion into a clique by choosing one of the can-
didates at the top of one of the partial orders. Al-
gorithms associated with Type III context sets that
have been satisfied are used to test the consistency
of a nominee with candidates already in the clique.
A consistent nominee is added to the clique; an in-
consistent one is removed from further considera-
tion with that clique. Further candidates are added
to the clique until none remain. Additional cliques
are generated in a similar fashion as computational
resources permit. Ultimately, one clique is selected
as the best interpretation of the image on the basis
of the portion of the image that is explained and
the reliability of the operators that contributed to
the clique.

The interaction among context sets is significant.
The addition of a candidate to a clique may provide
context that could trigger a previously unsatisfied
context set to generate new candidates or estab-
lish new preference orderings. For example, once
one bush has been recognized, it is a good idea
to look specifically for similar bushes in the im-
age. This tactic is implemented by a candidate-



generation context set that includes a context ele-
ment that is satisfied only when a bush is added to
a clique.

6.3 Representation of Context

We have outlined a paradigm in which the require-
ments of algorithms are matched against the con-
text of a given situation. To employ this paradigm,
it is necessary to have representations for the vari-
ous categories of contextual information that are to
be employed.

The coNDOR system employs the Core Knowl-
edge System (CKS), an object-oriented knowl-
edge/database that was specifically designed to
serve as the central information manager for a per-
ceptual system [15]. The CKS provides the abil-
ity to store contextual information, and to retrieve
it through a vocabulary of spatial and semantic
queries. It has the further ability to accommodate
conflicting data from multiple sources without cor-
rupting the inference channels. CONDOR uses CKS
to store a persistent model of the world, and then
uses that model as context for image understanding.
Image-understanding results are stored in the CKS
and hence are available as context for subsequent
processing.

The SRI Cartographic Modeling Environment
(CME) provides the primitive representations for
modeling the physical objects and their at-
tributes [9]. CME is also used for geometric op-
erations, including coordinate transformation, and
for display of imagery and synthetically generated
scenes.

6.4 Results

Figure 5(a) depicts an image that typifies those an-
alyzed by coNDOR. After several thousand IU al-
gorithm invocations and construction of 20 cliques,
CONDOR’s best clique correctly identified six of the
trees visible in the image. A perspective view of
the grass and trees in the 3D model produced by
CONDOR is shown in Figure 5(b).

CONDOR was able to achieve similar results from
processing more than 100 images of natural scenes
taken within a limited 2-square-mile area. When
tasked to analyze images from other natural areas,
CONDOR’s performance degrades because its contex-
tual knowledge is not totally relevant. This simul-

taneously illustrates the power of using context, as
well as the need to encode all contextual constraints
that are likely to arise.

7 RADIUS — Site Model Con-
struction

We now turn our attention to the RADIUS project,
which is concerned with constructing site models of
cultural objects from overhead imagery. Although
the specific algorithms to be employed in RADIUS
are likely to differ greatly from those in CONDOR,
their demands for contextual information are very
similar.

The biggest difference between CONDOR and RA-
DIUS is the fact that RADIUS is being designed as
a semiautomated system. Accordingly, our design
chooses to leave the evaluation of IU results to the
human operator. As a result, the Types II and III
context sets employed in CONDOR are not neces-
sary. Instead, we concentrate on the construction
of Type I context sets for controlling the invocation
of TU algorithms. This is particularly appropriate
for RADIUS given the wide variety of features to be
extracted and the large number of IU laboratories
expected to contribute algorithms.

The examples presented here are drawn from an
architecture that is being designed to support site
model construction for the RADIUS application. The
architecture incorporates a large number of generic
cartographic feature extraction algorithms; it uses
contextual information to identify those most likely
to succeed at a given task and to set their associated
parameters.

7.1 Model-Based Optimization

While the architecture we have designed is capa-
ble of enforcing the contextual constraints of al-
most any U algorithm, our initial experiences have
focused primarily on employing algorithms from
a paradigm known as Model-Based Optimization
(MBO).

Specializations of MBO have been referred to
by various other terms, including dynamic pro-
gramming [6], regularization [14], deformable sur-
faces [22], and snakes [10]. The approach under-
lying MBO is to express the solution to a feature-
extraction problem as a mathematical function of



Figure 5: Example of Processing Results by CONDOR.

some variables, and then to extract the feature from
imagery by adjusting the values of the variables
to minimize the function. Typically the objective
function includes terms that bias the feature’s ge-
ometry as well as its match with image data. As
we have posed it, MBO operators require four pa-
rameters: topological primitive, objective function
to be minimized, source of initial conditions, and
the optimization procedure to be employed. The
Context-Based Vision architecture must set these
parameters on the basis of known contextual infor-
mation or (in some cases) human input.

7.2 Context Sets

In coNDOR, Type I context sets are used to specify
the conditions that must be met for a given algo-
rithm to be applicable.
specify the conditions that must be met for a given
parameter setting to be useful. For example,

The context set can also

MBO(closed-curve, rectangular-corners,
manual-entry, gradient-descent):
specifies the parameters for an MBO algorithm
that could be used to extract roof boundaries un-
der some circumstances. The following context set
encodes conditions that are required for the extrac-
tion of roofs using that algorithm:
{ image-is-bw, image-resolution< 3.0,
interactivity-is-semiautomated }

This context set gives the requirements that must
exist for the above MBO algorithm to be applicable
and it specifies the suitable parameter values. In the
example above for detecting roofs, these parameters
have been specified as a closed-curve topology, an
objective function preferring rectangular corners,
initial boundary provided by manual entry, and the
use of a gradient-descent optimization procedure.

In practice, a large number of context sets gov-
erning the application of MBO algorithms as well
as other algorithms could be constructed and used
to implement a cartographic feature-extraction sys-
tem suitable for site-model construction. It is clear
that such a collection could be unwieldy and diffi-
cult to maintain. A more structured representation
of the context set concept is needed.

7.3 Context Tables

One alternative representation for context sets is
the context table — a data structure that tabulates
the context elements in a more structured fashion.
An IU algorithm is associated with each row in the
table; each column represents one context element.

The context table is equivalent to a collection
of context sets. Conceptually, it provides a more
coherent view of the contextual requirements of
related algorithms. Applicable algorithms are se-
lected by finding rows for which all conditions are



Table 4: A Context Table

feature interactivity images resolution

geography algorithm

1 roof  semiautomated single BW

< 3 meters

roof manual < 10 meters

< 1 meter

single

road semiautomated  single BW

4 | road semiautomated single BW < 10 meters

5 road semiautomated single BW <1 meter

6 road semiautomated single BW < 10 meters

road manual < 10 meters

< 1 meter

single

road manual single

road semiautomated single < 2 meters

— MBO(topology=closed-curve,
obj-fn=rectangular-corners,
init=manual-entry, opt=gradient-descent)
— CME(primitive=closed-curve)

hilly MBO(topology=ribbon-curve,
obj-fn=(smoothness(0.5),continuous,
parallel),

init=manual-entry, opt=gradient-descent )
hilly MBO(topology=open-curve,
obj-fn=(smoothness(0.5),continuous),
init=manual-entry, opt=gradient-descent)

flat VV urban | MBO(topology=ribbon-curve,
obj-fn=(smoothness(0.8),continuous,
parallel),

init=manual-entry, opt=gradient-descent)

flat V urban | MBO(topology=open-curve,
obj-fn=(smoothness(0.8),continuous),
init=manual-entry, opt=gradient-descent)
— CME(primitive=open-curve)

— CME(primitive=ribbon-curve)

— ROAD-TRACKER
(control=bidirectional-search,
init=manual-entry)

met. Table 4 contains an excerpt of a context ta-
ble for use in cartographic feature extraction which
illustrates the representation.

One drawback to the table representation is its
potentially large size. Fach algorithm may require
many rows to capture the contextual constraints
of its various parameter combinations. Its chief
value is its organization of contextual information
for knowledge-base construction.

7.4 Context Rules

A third alternative for representing context sets is
to encode them as rules whose antecedent is the
context set, and whose consequent is the applicable
algorithm.

For example,

{ image-is-bw, image-resolution< 3.0,
interactivity-is-semiautomated }

MBO(closed-curve, rectangular-corners,

manual-entry, gradient-descent):

One advantage of encoding the rules as a logic
program is that using the logic program interpreter

eliminates the need to devise special machinery to
test satisfaction of context sets. The context table
of the previous section (Table 4) can be recoded as
the roughly equivalent Prolog program given in the
Appendix.

A further representational efficiency is possible
by collapsing rules with common context elements.
For example. the only difference between rules gov-
erning Algorithms 3 and 4 and rules governing Al-
gorithms 5 and 6 is the geography term and the
value of the smoothness parameter. This depen-
dence could be generalized by additional rules that
relate smoothness to geography.

Whatever representation is chosen, it is clear that
context sets can be employed in either direction. In
the forward direction, the context sets are used to
find applicable algorithms. In the opposite direc-
tion, the sets can be used for several purposes, in-
cluding the selection of images on which to invoke a
given algorithm. For example, Table 4 shows that
the use of an MBO algorithm for finding a roof (Row
1) requires the existence of a monochrome image
with 3-meter resolution or better.




7.5 Results

Although the architecture we have described for the
RADIUS application is not yet fully functional, we
can illustrate its application using the example Ta-

ble 4.

Figure 6 compares the results of applying an
MBO algorithm both within and outside its inher-
ent contextual constraints. Figure 6(a) shows an
overhead view of a portion of the Mall in Washing-
ton, DC — a flat park area in an urban setting.
Figure 6(b) shows an overhead image of a hilly area
in the foothills of the Rocky Mountains in Colorado.
Both images are shown at approximately the same
scale.

The context table in Table 4 can be used to se-
lect an algorithm suitable for extracting roads in a
semiautomated setting. In the context of the anal-
ysis of the Washington DC image, both Algorithm
5 and Algorithm 9 are applicable, but we ignore Al-
gorithm 9 in this example. Algorithm 5 calls for
manual entry of the initial curve, which is shown in
Figure 6(a). Optimization of this curve using the
specified objective function and optimization pro-
cedure results in the model depicted in Figure 6(c)
— a reasonably accurate extraction of the road.

This algorithm is not applicable to the Rocky
Mountain image, because of the different geograph-
ical context. If it were applied anyway, optimiza-
tion of the initial curve shown in Figure 6(b) would
result in the curve shown in Figure 6(d) — an ex-
traction that does not follow the road boundaries
well.

The context table shows that Algorithm 3 (with
its lower smoothness parameter) is applicable for
the Rocky Mountain image. Applying it to the same
initial curve gives the result depicted in Figure 6(f),
a significant improvement over that obtained by Al-
gorithm 5.

Had Algorithm 3 been appplied to the Washing-
ton DC image (where its context is violated), the
result shown in Figure 6(e) would have been ob-
tained — a noticeably poorer delineation of the road
than that obtained with a higher smoothness pa-
rameter. It is not surprising that the choice of pa-
rameters can have a critical effect on the output
of an IU algorithm. More important, this exam-
ple illustrates that contextual information can be
successfully used to choose parameter settings.

7.6 Knowledge-Base Construction

The context sets (or context table or context rules)
constitute the knowledge base employed by the sys-
tem. It is clear that the performance of the system
will be limited by the accuracy and completeness of
the knowledge base. The context sets employed in
coNDORand the context rules being constructed for
the RADIUS application are hand-crafted based on
ad hoc experimentation with available imagery. It
is clear that a more automated, or at least a bet-
ter grounded procedure for constructing the context
rules is desirable, both for accommodating a poten-
tially large knowledge base and for extending the
domain of competence beyond that originally con-
ceived.

There are several approaches by which the sys-
tem could learn the most effective context rules.
Perhaps the most enticing one for interactive inter-
pretation is one in which the system learns through
experience. Whenever a situation arises for which
there is no applicable algorithm, or for which all the
applicable algorithms give unacceptable results, the
human operator has no choice but to edit the result
or model the feature by hand, and then continue
the site-model construction. Such a manual extrac-
tion can serve as the “correct” answer in a super-
vised learning process. By capturing the context
that failed initially, the learning procedure can the-
oretically compare the results of many algorithms
with the “correct” one — whenever there is a suf-
ficiently accurate match, a new context rule can be
added. One can also imagine finding a better set of
parameters by posing the problem as one for MBO:
the algorithm’s parameters can be varied systemat-
ically until the best match with “correct” answer is
obtained. If the match is sufficiently close, a new
context rule with the corresponding parameter set-
tings can be installed.

Automating the construction of the context rules
is both important and difficult. There are many
promising approaches, but none have yet been seri-
ously tried.

8 Summary

We have described some of our experience in ap-
plying the CONDOR architecture to the site-model
construction task of RADIUS. The semiautomated
nature of RADIUS obviates the need for some of the



machinery employed in the fully automated design = % alg(Wiame, Parameters) :-

of cONDOR. The availability of a human operator , o ) ) )
. i % alg specifies the applicable functions and their

permits access to some kinds of context that were 4  “appropriate parameter settings for use in a

not available to CONDOR, such as the level of inter- %  prescribed context

.. desired d 1 sk 1 f individual % HName is a symbol denoting the function to be invoked

aCUVlty esired, and manual s etches of individua % Parameters is a sequence of parameters whose format

features. The existence of a human to review and %  depends on the function

edit the IU results offers the opportunity to use a alg(mbo, [closed-curve, obj-fn(rectangular-edges),

supervised learning scheme to improve the quality manual-entry, gradient-descent]) :-

of the knowledge base or to extend its range of com- object-type(root),

site(Site),
petence. interactivity(semiautomated),
The large number of features and wide range of image-site(Image,Site),
. . i . . modality(Image, bw),
imaging conditions that must be considered for site- image-resolution(Image, GSD),
model construction in RADIUS stress the context set GSD =< 3.0 .
representation employed in CONDOR. While con- alg(ome, [closed-curve] ) :-
text sets were adequate for the knowledge base of object-type (roof),
site(Site),

CONDOR, it has been necessary to consider more X S
interactivity(manual),

effective representations that will extend to the re- image-site(Image,Site),
quirements of site-model construction. Two new é:;g:;rfg"é“ti"“(lmage’ GsD),
constructs — context tables and context rules — o

offer a more systematized organization for the con-  alg(mbo, [ribbon-curve,

1. . obj-fn(smoothness(0.5), continuous, parallel),
text knowledge base that should facilitate its con- nanual-entry, gradient-descent]) :-
struction. These representations offer additional object-type(road),

site(Site),

economies in both storage and computation that X - .
interactivity(semiautomated),

may be vital to implemetation of large systems. The image-site(Image,Site),
symmetry of context tables and rules encourages modality(Image, bw),

K X X . . i image-resolution(Image, GSD),
their use in either direction: to select algorithms GSD =< 1.0,
and set their parameters, or to describe the condi- site-geography(Site, hilly)
tions that must be satisfied for a given algorithm to 1 (o, [open-curve,

be applicable. This final capability raises the pos- obj-fn(smoothness(0.5), continuous),

R . l-entry, dient-d t]) :-
sibility of using context rules to choose the most manual-entry, gradient-descent]
object-type(road),

appropriate images for interpretation. site(Site),
interactivity(semiautomated),
image-site(Image,Site),

modality(Image, bw),
ACknOWledgmentS image-resolution(Image, GSD),
GSD =< 10.0,

I am indebted to Marty Fischler for the numerous site-geography(Site, hilly)

discussions that motivated and shaped much of this
work. Thanks also to Pascal Fua for the use of his  alg(mbo, [ribbon-curve,

. . obj-fn(smoothness(0.8), continuous, parallel),
snake algorithms and to Lynn Quam for supplying manual-entry, gradient-descent]) :-

the Cartographic Modeling Environment which fa- object-type(road),

. . . . . site(Site),
cilitated the implementation and experimentation X S0 i
interactivity(semiautomated),
eIM)THlOUSly. image-site(Image,Site),

modality(Image, bw),
image-resolution(Image, GSD),
GSD =< 1.0,

Appendix site-geography(Site, flat)

2 alg(mbo, [open-curve,

is roughly equiva-
ghly €q obj-fn(smoothness(0.8), continuous),

The following Prolog program

lent to the context table depicted in Table 4. manual-entry, gradient-descent]) :-
object-type(road),
site(Site),

interactivity(semiautomated),

?More compact programs are possible. image-site(Image,Site),



modality(Image, bw),
image-resolution(Image, GSD),
GsD =< 10.0,
site-geography(Site, flat) .

alg(cme, [open-curve] ) :-
object-type(road),
site(Site),
interactivity(manual),
image-site(Image,Site),
image-resolution(Image, GSD),
GSD =< 10.0 .

alg(cme, [ribbon-curve] ) :-
object-type(road),
site(Site),
interactivity(manual),
image-site(Image,Site),
image-resolution(Image, GSD),
GSD =< 1.0 .

alg(road-tracker,

[bidirectional-search, manual-entry] ) :-

object-type(road),
site(Site),
interactivity(semiautomated),
image-site(Image,Site),
image-resolution(Image, GSD),
GSD =< 2.0 .
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Figure 6: Context-Based Feature Extraction.



